
International Conference
on Industrial Engineering and Systems Management

IESM 2009
May 13-15
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Abstract

Maintenance problems are crucial aspect of nowadays industrial problems. However, the quest of the efficient
periodicity of maintenance for all components of a system is far from an easy task to accomplish when consid-
ering all the antagonistic criteria of the maintenance and production views of a production system. Thus, the
objective is to simultaneously ensure a low frequency of failures by an efficient periodic preventive maintenance
and minimize the unavailability of the system due to preventive maintenance. This implies a minimum impact
on the production. In this paper, several tools are combined to collaborate in order to optimize multi-component
preventive maintenance problems. The structure of the maintenance-production system is modeled thanks to a
framework inspired by our previous research projects. The dynamic aspects are modelled by a combination of
timed petri-nets and PDEVS models and implemented in our VLE simulator. The parameters of the resulting
simulation model are optimized via a Nelder-Mead (Simplex) Method.
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1 Introduction

The present economical context requires from companies that they practice an optimal exploitation of
their production tools. In this purpose, every decision maker is asked to assure a maximum availability of
these production tools at minimal cost. The optimization consists in determining the best “parameters
combination” which provides the best values of the technical and economical criteria. However, in most
cases, it appears to be very difficult to use analytical approaches without formulating restrictive hypothe-
sis. In order to evaluate these performance criteria, simulation is the best adapted solution. In this paper,
we suggest an approach integrating optimization and simulation. This approach consists in generating
solutions more and more efficient with an optimization tool and to evaluate them via a simulation model
until a halt criterion is satisfied. This integration is illustrated in figure 1.
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Fig. 1. Optimization and simulation integration

Our work aims to provide a framework to facilitate the optimization of production and maintenance
through simulation. This paper focuses on the simulation aspect. We want to develop a generic modeling
tool for simulation, easy to understand by decision makers. The objective is to facilitate the creation of
simulation models by the use of constructs (elementary components).

The remainder of this paper is organized as follows. The second section presents the maintenance problem;
the third section introduces the simulation paradigms, formalisms and tools that constitute the bases
of our framework; the fourth section depicts our modeling component; the fifth section describes an
application of our optimization-simulation hybrid. Finally several conclusions and perspectives are given.

2 Maintenance strategies

A maintenance strategy is defined as a decision rule which establishes the sequel of maintenance actions.
Each maintenance action allows one to maintain or restore the system in a specified state by using the
appropriate resources. Cost and duration are incurred to execute each maintenance action. Many papers
dealing with preventive maintenance and replacement strategies have been published in the last two
decades [13]. We consider for this paper one basic replacement policy (Bloc Replacement Policy BRP).
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Fig. 2. Availability of the system subject to the Block Replacement Policy

Barlow and Proshan [1] consider also the BRP where the replacements are undertaken at KT with
K = 1, 2, 3, . . . and T a fixed time, or at failure (see figure 2). Only new items are used to perform
replacement. Cp and Cr are respectively the preventive and corrective replacement costs.

3 Simulation

In this section, we present the VLE simulator and the underlying paradigm and formalism. This simulator
relies on strong concepts and intrinsically provides multi-modeling capabilities. This perfectly matches
the objective of the simulation and modeling tool that we are currently implementing. This is also largely
facilitated by the available extensions such as Petri-nets [9].

3.1 DEVS, VLE and Petri-nets

Nowadays, it is recognized that multimodeling is a powerful concept for the modeling and simulation of
large complex systems. At the end of 80’s, P.A. Fishwick and B.P. Zeigler [5] introduced the multimodeling
basis concepts. One can define multimodels as large models which are composed of different types of
models (i.e. different paradigms or formalisms) [4]. Concepts like refinement and hierarchical composition
are basis of multimodeling. The first describes the decomposition of one model into several other ones in
order to refine the behavior of the composed model. The last defines the opposite process: it is say models
aggregation. In this context, a major issue is how to deal with the coupling of heterogeneous models.
Several works deal with the coupling of heterogeneous models. For a review of concepts and techniques,
see the book of B.P. Zeigler et. al. [15]. With DEVS, Discrete Event System Specification [14], B.P. Zeigler
has provided formal basis for the construction of coupled model in a network or graph manner. In this
section, we focus on the Discrete Event System Specification formalisms (DEVS) and their associated
extensions, in particular Petri-net.
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3.1.1 Discrete Event Simulation

Our works take place in the Modeling and Simulation (M&S) theory defined by B. P. Zeigler [14].
M&S theory tends to be as general as possible. It addresses major issues of computer sciences. From
artificial intelligence to model design and distributed simulations, M&S theory aims to develop a common
framework (formal and operational) for the specification of dynamical systems. Many theoretical basis
and formal extensions to DEVS were carried out, therefore, we advise the second edition of B. P. Zeigler’s
book [15] to have an overall picture of these works. DEVS defines an atomic model as a set of input and
output ports and a set of state transition functions: M = 〈X,Y, S, δint, δext, λ, ta〉
where: X is the set of input values and Y is the set of output values

S is the set of sequential states
δint : S → S is the internal transition function
δext : Q×X → S is the external transition function
λ : S → Y is the output function
ta : S → R+

0 is the time advance function
Q = {(s, e)|s ∈ S, 0 = e = ta(s)}
where Q is the set of total states and e is the time elapsed since last transition

Every atomic model can be coupled with one or several other atomic models to build a coupled model.
This operation can be repeated to form a hierarchy of coupled models. The set of atomic and coupled
models and their connections are named the structure of the model.

DEV SN = 〈X,Y,D,EIC,EOC, IC〉

Where X and Y are input and output ports, D the set of models, EIC, EOC and IC, respectively,
input, output and internal connections. Moreover, DEVS is an operational formalism, i.e. it provides the
algorithms (the abstract simulators) that implement the formal models. So, since the beginning of the
DEVS works, several DEVS simulators are implemented. The next section develop the VLE simulator,
based on the DEVS formalism.

3.1.2 VLE

VLE [11][12] (Virtual Laboratory Environment) is a software and an API (Application Programming
Interface) which supports multimodeling and simulation by implementing the DEVS abstract simulator.
VLE is oriented toward the integration of heterogeneous formalisms. Furthermore, VLE is able to integrate
specific models developed in most popular programming languages into one single multimodel.

VLE implements the Dynamic Structure Discrete Event formalism (DSDE) [3] which provides the ab-
stract simulators for Parallel DEVS (PDEVS) [15] for the parallelization of atomic models and Dynamic
Structure DEVS (DSDEVS) [2] for the M&S of systems where drastic changes of structures and behav-
iors can occurred over time. DSDE abstract simulators gives to VLE the ability to simulate distributed
models and to load and/or delete atomic and coupled models at runtime. VLE proposes several simula-
tors for particular formalisms. In addition to DSDE, for instance, cellular automata, ordinary differential
equations, difference equation, Petri-net and so on.

This framework can be use to model, simulate, analysis and visualize dynamics of complex systems. His
main features are: multi-modelling abilities (coupling heterogeneous models), a general formal basis for
modelling dynamic systems and an associated operational semantic, a modular and hierarchical represen-
tation of the structure of coupled models with associated coupling and coordination algorithms, coupling
of pre-existing models, distributed simulations, a component based development for the acceptance of
new visualization tools, storage formats and experimental frame design tools, and free and open source
software.

3.1.3 Petri-nets

The DEVS approach is applied to the Petri-nets [9]. Works dealing with the mapping of Petri-nets into
DEVS exists (see [6] for instance). In these works, places and transitions are specified as atomic models
and the network as coupled model. In our approach, we wrap a Petri-net simulator in a DEVS simulator.
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In the following, we give the definition of a Petri-net: PN = (P, T, F,W,m0)
Where: P = {p1, . . . , pp} is a set of places, where: p = card(P ),

T = {t1, . . . , tt} is a set of transitions, where: t = card(T ),
F ⊆ (P × T ) ∪ (T × P ),
W is a weight function: F → N, where W = {. . . , ((pi, tj), w−ij), . . . ((tj , pi), w+

ji)}
m0 is the initial marking: P → N, where m0 = {(p1,m

0
1) . . . (pp,m

0
p)}

In the context of this paper, this definition is not sufficient, therefore timed transition and inibitor arc
are added to specification and simulator. The definition of a petri-net is now completed by wrapping
function denoted χ. This function is divided into two parts: χT is the input transition-wrapping function
and χP is the output place-wrapping function. The n-uple of χP defines the effect of the marking of an
output place p of the model. When a token arrives to an output place, an output event is build and send
to associated output port. The function χT is related to input events which have an effect on transition
of petri-net. If an event arrives on a port belonging to χT , the transition tj is fired.

χT = {(p, tj)} where: p ∈ X and tj ∈ T
χP = {(p, pi)} where: p ∈ Y and pi ∈ P

In this approach, informations related to the events are ignored. When a token or a set of tokens arrives
in a place then one can send an event. This event is marked. The internal dynamic of a Petri-net is
controlled by the marking and the structure of the network. While one or more transitions are enabled
then the marking evolves. This evolution is independent of the concept of time, except in the case of
timed transition.

4 The MSP component

One of the objectives of this research is to create a versatile “component” that can be assembled at will,
in various ways so as to study the interaction of scheduling and maintenance in production systems.
Our work aims at presenting the coupling of “as easily understandable as possible” simple-models rather
than one monolithic dedicated model. Another objective of our research is to study the integration of
decision and optimization tools with simulation models applied to various fields. The optimization tool
is a Nelder-Mead (Simplex) method but other methods might also be used. In the presented results, the
VLE simulator is used to implement our so-called “MSP component”. This component comprises several
parameters (number of jobs to be performed, statistical distributions, durations of maintenances...) which
are used as degrees of freedom to be tuned by the decision markers and/or the optimization method.
Several MSP components are assembled to simulate production systems. Each component contains two
Petri-nets presented in figure 3. The first one is the scheduler, named MaintScheduler (see figure 3(a)).
It is responsible for local scheduling rules as well as internal and external synchronization aspects. The
presented results are based on a basic scheduler but it might be remplaced by a more realistic scheduler.
The second Petri-net-based model, named MaintSchedProd, is the actual operating part of the compo-
nent, in charge of coupling production and maintenance aspects (figure 3(b)). The “Maintenance and
Scheduling Production” model (MaintSchedProd, or MSP for short) is largely based on classical Petri-nets
used in production systems (see for instance [10]). It has been adapted to be used in conjunction with a
scheduler and a maintenance strategy to work properly in our VLE simulator.

In the MSP component, two kinds of events may stop the production. The first one is the “breakdown with
recovery” (bdwr for short) event. It can only occur when a process is running and (only) leads to an extra-
duration in the processing time. The second one is the “breakdown with no recovery” (bdnr for short).
This event stops the production and the current job is discarded. A new job needs to be rescheduled to
replace the discarded one. An additional delay related to the corrective maintenance needed to repair the
component is also considered.

As shown in figure 3, the CMSP component is a coupled model. This coupled version of the MSP component
is composed of several interchangeable and parameterized models. These models are presented in the
following sub-sections. Due to the implementation of the Petri-nets in the VLE simulator, all input-ports
are connected to specific input transitions “>|” that only accept the input port as incoming event and
no incoming arc. Several internal links are not represented directly when considering the detailed view of
the MSP component (see figure 3(c)).
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Input/Output-ports:

standby: external synchronization
prevprocready: previous component is ready
nextprocready: next component is ready
currentprocready: current component is ready
cmnrdone: end of corrective maintenance
mpdone: product & preventive maintenance done
bdnr: non-recoverable breakdown
endtempo: end of (external) temporization
fault: current process rejected due to breakdown
syncprevproc: synchronize previous component
syncnextproc: synchronize next component
synccurrentproc: synchronize current component
starttempo: start (external) temporization
endproc: normal end of current process
interrupttempo: stop temporization (breakdown)
Initial marking (model parameters):

P1token: number of tokens at place P1 at t=0
P2token: number of tokens at place P2 at t=0

(a) Maint-schedulder Petri-net (MSC model)
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Input/Output-ports:

synchro: external synchronization of component
reinit: reinitialization post-process/maintenance
prmt: preventive maintenance request
endofp: end of (current) process/product signal
bdwr: breakdown with resume/recovery
start: immediate start of process
bdnr: non-recoverable breakdown
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T4: bdwr duration, equal to bdwrdur parameter
T5: cmnr duration, equal to cmnrdur parameter
T6: prmt duration, equal to prmtdur parameter

Initial marking (fixed):

One token at P11 and one token at P89 at t=0.
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Fig. 3. The MSP component

4.1 MaintSchedProd model

The MainSchedProd model is designed to be compatible with production problems comprising stocks
and auxiliary resources. The initial marking depends on the configuration of the overall MSP component.
In the presented results, there are one token at P11 (reinit) and one token at P89 (standby) when
starting the simulation (at t=0). The MainSchedProd Petri-net model is composed of two sub-nets. The
first-one deals with synchronization aspects. It is composed of two input-ports (synchro and reinit)
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and two output-ports (standby and ready). The other sub-net comprises all remaining input-ports and
output-ports and acts as the “operating part” (that is, the machine or the component of a machine to be
modelled). Assuming that reinit and standby are appropriately initialized, here is a summary of the
model constraints and internal functioning.

When no maintenance and breakdown event occur, the default path of tokens is the following. An external
event on input-port start indicates that the current MSP component is processing a job (i.e. there is a
token in place P2). At the end of current job, an external event is received on input-port endofp to indicate
the end of processing phasis (i.e. a token is send to place P3). In addition to this default path, when current
MSP component is processing as job, three paths are also possible when a recoverable breakdown bdwr,
a non-recoverable breakdown bdnr or a preventive maintenance prmt occurs. This respectively send the
token from P2, to T14→P4, T15→P5 or T2→P3→T9→P6. As illustrated by the latter path, in this version
of the MSP component preventive maintenance is performed just after the end of the current job. Several
(consecutive) preventive maintenance requests prmt are allowed. They are memorized via several tokens
in P9 and performed through several cycles in the loop constituted of P3, T9, P6, T6. Similarly, several
(consecutive) breakdowns with recovery bdwr are allowed. They are memorized via several tokens in P14
and performed through several cycles in the loop constituted of P2, T14, P4, T4. Contrary to previous
events, there is no loop when considering P5 (start of bdnr). In fact, when bdnr occurs the objective is
to restart the production as soon as possible just after corrective maintenance. All corrective maintenance
operations are done at one time. The current product is scrapped and a new product must be processed.

Several parameters are available in this atomic-model. The first one is the number of tokens (param-
eterized by the auxresnum parameter) that are required to fire the T10 transition. It is used to allow
multiple synchronization signals/events before sending the ready signal. It might also be used to include
auxiliary resources in our models. In the presented results, this parameter is systematically set to one.
Three additional parameters are available through the (constant) durations of the T4, T5 and T6 timed-
transitions. They are used to parameterize the duration of breakdowns and maintenances. In this paper,
these parameters are set to constant values, but it is also possible to add several additional models to
implement variable durations either randomly generated (see for instance the MaintDuration model) or
read from actual production logs/histories. Setups might be included by using a timed transition at T10,
transport delays might also be considered by using a timed transition at T89.

This paper focuses on maintenance aspects, so the MaintSchedProd model is configured in a simplified
version, ignoring stocks and/or auxiliary resources. This leads to the following systematic “default wiring”:
• output-port ready is connected to input-port start;
• output-ports mpdone and cmnrdone are connected to input-port reinit.

The MaintSchedProd needs a scheduler to obtain start/stop events, as well as a maintenance strategy to
deal with breakdowns and preventive maintenance.

4.2 MaintScheduler model

The “Scheduler” model (MaintScheduler, or MSC for short) is based on a basic scheduling algorithm.
In the presented study, its aim is to systematically load the production process at its maximum level of
production through the MaintSchedProd model. This allows us to concentrate on maintenance aspects
when considering heavily loaded periods. The details of its functioning is not explained in detail in this
paper due to lack of space. However, it can be summarized in a few words. This scheduler acts as an infinite
loop that sends sequences of events to the MSP model to process as many as possible jobs while taking into
account the events provided by the maintenance strategy (MaintStrat<strat>). There is also an internal
loop (materialized through the cycle P10→T11→P11→T12→P12→T14→P9→T15→P90→T10→P10) that
is used to restart scrapped jobs resulting from bdnr breakdowns. The place P10 acts as P2 of the MSP
model. A token in this place indicates that a job in running. The place P11 send its token to T13 when
no non-recoverable breakdown occur, it sends its token to T12 otherwise.

The MaintScheduler uses the MaintDuration model to generate process durations. The MaintDuration
model is reduced to its simplest version to generate random durations. Its functioning is the following.
When an event occurs at the start input-port, a random duration (using uniform distribution with
(µ = 5, σ = 2) is this example) is generated and a countdown is started. When the countdown is over
or when an event occurs at the interrupt input-port, an event is send to the end output-port and this
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model is set to an “idle state” waiting for next start event. However, it is possible to replace this model
by a more sophisticated one that reads a list of orders from a file and sorts the orders according to their
duration. The sorting key might be based on one criterion (or several criteria) so as to implement various
classical dispatching rules such as SPT (Shortest Processing Time first)... The interrupt input-port is
also used to regenerate same duration to model several processing attempts of the same order when
breakdowns occur.

The initial marking depends on the interconnections of the overall MSP component, as well as the kind of
production (cyclic production...). In order to facilitate the integration of this model in various schemes,
the initial marking (i.e. the number of tokens available at t=0) in places P1 and P2 are parameterizable
through the configuration file of the models. The duration of the scheduled products are not stored and/or
generated in/by this model. It also needs an external MaintDuration model to compute these durations.
In this paper, the durations are randomly generated by the MaintDuration model. It is a temporization
that can be interrupted when a breakdown occurs (see figure 3(c)).

The tandem MaintScheduler-MainSchedProd requires a maintenance strategy to deal with breakdowns
and preventive maintenance.

4.3 MaintStrat<strat> model

The “Maintenance-Strategy” models (MaintStrat<strat>, or MS<strat> for short) are based on var-
ious maintenance strategies. Several models MaintStrat<strat> can be used. For instance, the bloc-
strategy is available through the MainStratBloc model. It relies on a MaintDistrib<Distrib> model
to “compute” breakdowns occurrences. In the presented example, the MainStratBloc model is directly
implemented in C++ and included in the collection of classes and objects available in the VLE simula-
tor. However, it might also be implemented via a Petri-net or a more sophisticated coupled-model. The
functioning of the MaintStratBloc is the following. It is controlled by two input-ports, namely cont and
stop, that are respectively used to (re-)activate or deactivate the outputs. The output-ports are used to
send recoverable and non-recoverable breakdowns (respectively through bdwr and bdnr output-ports) as
well as preventive maintenance requests (through prmt output-port). The algorithm is given in figure 4.

tbpm ←− pm
while not EndOfSimulation do

Generate tbf using MaintDistrib distribution
if tbf < tbpm then

// Next event is a breakdown (bdnr) followed by corrective maintenance
Wait tbf time-units
if OutputAllowed then Send an event on bdnr output-port
tbpm ←− tbpm − tbf

else
// Next event is a preventive maintenance (prmt)
Wait tbpm time-units
if OutputAllowed then Send an event on prmt output-port
tbpm ←− pm

endif
endwhile
tbf, tbpm: respectively, time before failure and time before preventive maintenance
pm: period of maintenance (this is a parameter of the algorithm/model)
OutputAllowed: boolean variable (flip-flop on cont and stop input-ports)
MaintDistrib: Probability distribution (this is seen as a parameter)

Fig. 4. MaintStratBloc algorithm.

The three main atomic-models MaintScheduler, MainSchedProd and MaintStratBloc constitute the
heart of the MSP component. Additional models might also be used to enhance the component or to allow
the assembly of several components. The following sub-section presents one of those models that is used
in the presented experimental problem.

4.4 MaintSwitch model

The MaintSwitch model is a simple Petri-net (see figure 5). It is used to interconnect MSP components.
The objective of this model is to send an event from the input-port (in) to the output-port out1 or out2
according to (respectively) the events received through input-ports avail1 or avail2. If several events
generate simultaneous tokens in places P1 and P3, one output-port (out1 or out2) is randomly selected.
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4.5 Coupled CMaintSchedProd component

Thanks to the intrinsic properties of DEVS models, the “Coupled Maintenance and Scheduling Produc-
tion” model (CoupledMaintSchedProd, or CMSP for short) is a coupled model composed of the previously
described models linked together (see figure 3(d)). It constitutes the “building bloc” (i.e. an elementary
component) of our parameterized simulation model to be optimized through an optimization tool.

4.6 Modelling through a Graphical User Interface

 

Fig. 6. The OptiMain GUI used to assemble four coupled models in a parallel/serial scheme

In order to facilitate the composition of simulation models, we are adapting a GUI (see figure 6) to the
development of maintenance-production optimization and simulation models based on the VLE simulator.
Previously dedicated to the rapid development of maintenance simulation models, this GUI was developed
in the context of the OptiMain project [7,13]. However, in this paper the production aspects are also
considered contrary to the OptiMain project that exclusively focuses on the maintenance point of view.

5 Our results

After a brief introduction to the Nelder-Mead optimization method, this section presents the results
obtained by the optimization of a production system via our hybrid model.

5.1 Nelder Mead

In the presented study, the optimization tool is a Nelder-Mead [8] (Simplex) method, but other tools
might be used. Nelder-Mead is a local optimization method which is frequently used. This deterministic
method is known as “direct”: it tries to solve the problem by directly using the value of the objective
function, without calling upon its derivative. This method is especially appreciated for its robustness,
its simplicity, its low use of memory (few variables) and its short computing time. This algorithm is
robust because it is very tolerant with the noises in the values of the objective function. Contrary to the
other methods which start from an initial point, the Nelder-Mead method uses a “polytope” departure.
A polytope is a geometrical figure of (n+1) points, N being the dimension of the problem. The starting
polytope is composed by a randomly selected point in the search space; and n other points selected
so as to form a base, generally an orthogonal base. At each iteration of the algorithm, the n+1 points
are used to determine a set of points which are obtained by using very simple algebraic operations,
which result in elementary geometrical transformations (reflection, contraction, expansion, and polytope
contraction). These points are accepted or rejected according to the value of the objective function. The
polytope changes, it extends, contracts, with each movement. Thus it adapts to the search space, until
it approaches an optimum. To determine the adequate transformation, the method uses only the value
of the objective function at the considered points. With each transformation, the worst current point is
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replaced by the new given point. The stopping condition of the algorithm depends on the difference in
value of the objective function between the best and the worst points.

5.2 Experimental results
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Fig. 7. Four coupled models in a parallel/serial scheme

Several preliminary tests have been done, using serial or parallel combinations of CMSP components. By
extension, all production structures are accessible to our simulation model through a decomposition in
serial and/or parallel pairs of CMSP components. In order to present the minimum serial and parallel pairs
of CMSP components, the considered simulated and optimized model is composed of four identical CMSP
components as presented in figures 6 and 7. Our aim is to determine optimal values of the preventive
maintenance periodicity for the BRP strategy. The components are parameterized as follows: the duration
for preventive maintenance action is set to Tp=0.01 and duration for corrective maintenance operation
is Tc=0.1, lifetime of components 1 to 4 are associated with a normal distribution (µ = 5, σ = 2).
The processing times of the scheduled jobs are randomly generated according to a uniform distribution
ranging from 1 to 5 time-units. The breakdowns with recovery (bdwr) are not used in this paper. The
presented average results are obtained from twenty runs of 1800 time-units. The Nelder-Mead optimization
method gives the following results for components 1 to 4, (T 1

p , T
2
p , T

3
p , T

4
p ) = (2.391, 3.484, 3.284, 2.396)

with availability equals to 0.874. The values of T i
p are close to those obtained thanks to the OptiMain

tool. However there is a gap between the availability obtained via the OptiMain tool and the presented
multimodel due to the integration of the production aspects in the CMSP components. The synchronizations
resulting from the consideration of the production leads to add gaps in the schedule as well as extra-delays
before preventive maintenance periods. This is illustrated by the Gantt chart given in figure 8. These
gaps and delays indirectly modify the global availability of the system. The validation of our hybrid is
confirmed by additional tests which are not presented in this paper due to lack of space.
CMSP1
CMSP2
CMSP3
CMSP4

0 Time

Fig. 8. Gantt chart related to the four CMSP models (first operations at the beginning of the simulation)

6 Conclusions and perspectives

Thanks to our VLE simulator, we have presented in this paper an hybrid method composed of the Nelder-
Mead algorithm hybridized with a simulation multimodel. This multimodel is decomposed into several
models implemented in the VLE simulator. This implementation is largely simplified by the extensions
of the VLE simulator which provides several skeletons (similar to design patterns or constructs in other
modelling tools/languages) to guide the implementation of the models.

All possibilities of the simulation model are not used in this paper. Our next objective is to provide a
new framework to optimize the combined scheduling of production and maintenance. Short term work
will consist in the integration of more efficient maintenance strategies as well as sophisticated schedulers.
We are also working on the building blocs (constructs) of our multimodels that will provide a complete
GUI, easy to understand by decision makers.
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