
8th International Conference of Modeling and Simulation - MOSIM’10 - May 10-12, 2010 - Hammamet - Tunisia
“Evaluation and optimization of innovative production systems of goods and services”

UML-STATECHART MODELING TOOL FOR THE VLE SIMULATOR: AN
APPLICATION TO A CHRONIC RENAL DIALYSIS UNIT

O. ROUX

FUCaM/ LSM

Chaussée de Binche, 151
B-7000 Mons - Belgique

roux@fucam.ac.be

D. DUVIVIER1,2, E. RAMAT1,2

1 Univ Lille Nord de France,
F-59000 Lille, France

2 ULCO, LISIC, BP719
F-62228 Calais Cedex, France
{Duvivier,ramat}@lisic.univ-

littoral.fr

G. QUESNEL,

INRA, UR875 Biométrie et
Intelligence Artificielle,

F-31326 Castanet-Tolosan, France,
gauthier.quesnel@toulouse.inra.fr

C. COMBES

EURISE - Faculté des sciences,
Université Jean Monnet

23 rue du Docteur Paul Michelon
F-42023 Saint-Etienne cedex 2

combes@univ-st-etienne.fr

ABSTRACT: The various reforms of the health care system aim at reducing the corresponding costs. So the hospitals
must rationalize their costs while guaranteeing a good quality of service. In order to reach this goal, different scenarios
of health care unit management have to be envisaged and carefully evaluated before their implementation on the
system. Thus, simulation is used more and more frequently to evaluate the performances related to the reorganization of
the health care units. However the elaboration of accurate simulation models is not an easy task. In this paper, we use a
modeling tool dedicated to performance evaluation via the VLE (Virtual Laboratory Environment) simulator in the case
of a chronic renal dialysis unit reorganization. The modeling part is based on the UML statecharts (Unified Modeling
Language) which are used to generate VLE simulation model and XML file for the parameterization

KEYWORDS: Modeling tool, UML, statecharts, simulation, VLE, dialysis unit.

1 INTRODUCTION

Due to various reforms, the nowadays hospitals have to
reduce their outlay and improve their reactivity.
Many efforts have to be accomplished to adapt their sys-
tems to the patients’ needs, the technological evolutions
and the social and economic context.
In order to control these systems, many problems have to
be solved from the design phase. Due to the investments
required from the implementation of a new health care
unit, the dimensioning problems are very important.
During the exploitation phase, to change the hospital
functioning is difficult or even risky. It is necessary to be
able to evaluate a priori the functioning and the restruc-
turing of these systems and to anticipate the effects of an
important workload increase on their behavior. This
short overview of the problems relating to hospitals is
sufficient to justify the need of an a priori or a posteriori
evaluation of hospital performances faced to a workload.
These problems can be solved in using the modeling and
performance evaluation techniques (by discrete-event
simulation) [Law99]. Simulation is a useful tool to re-
produce the functioning of a system and to test several
configurations or management rules. But two difficulties
appear. The first one consists in analyzing the system in
order to build a model. The second one consists in trans-
lating the obtained model into a simulation language.
These two difficulties have been solved thanks to the
elaboration of a methodological framework which allows
on the one hand to apprehend the complexity of these
systems and to design representative models of the real-
ity, and on the other hand to obtain the corresponding
simulation model (program) in an almost semi-automatic

way. In the article, we present an application of a model-
ing tool in the case of a chronic renal dialysis unit. The
method includes the collection and formalization of hos-
pital needs, the identification of objectives, the analysis
and specification of the entities constituting the system,
and the semi-automatic translation into a discrete event
simulation language which is in this case, VLE [Ques-
nel09].
The proposed framework uses UML (Unified Modeling
Language) [OMG04] and is inspired by MDA (Model
Driven Architecture) [Mukerji01] concept for modeling
and specification stage.
The proposed modeling tool is based on generic meta-
models described in UML class diagrams. These models
are afterwards specialized for a system class and instan-
tiated for a specific case of the system class. The ob-
tained model is translated into a simulation language in
using MDA methodology. MDA is a methodology of
development proposed by the OMG (Object Manage-
ment Group)1. It allows to separate the functional speci-

1 http://www.omg.org

MOSIM’10 - May 10-12, 2010 - Hammamet - Tunisia

fications (from a system of the specifications) to its im-
plementation on a given platform. In this purpose, MDA
defines architecture of specifications structured in Plat-
form Independent Models (PIM) and in Platform Spe-
cific Models (PSM). It proposes a modeling approach
based on model patterns like the design patterns of the
object-oriented paradigm. It needs to develop translator
to convert UML model into PSM in our case, a transla-
tion in a discrete event simulation language such as
VLE. This paper is organized as follows. The section 2
presents the study context concerning the problems relat-
ing to hospital management. The section 3 introduces the
proposed modeling methodology for performance evalu-
ation by simulation. The section 4, present the used sim-
ulation framework (VLE). In section 5, we present an
application concerning the modeling of a chronic renal
dialysis unit using the modeling methodology (modeling
and specification with UML). We conclude with some
perspectives of research.

2 STUDY CONTEXT: PROBLEMS RELATING

TO HOSPITAL SYSTEMS

Hospital managers have to control the health care con-
sumption without altering their quality, so as to effi-
ciently allocate human and financial resources to each
unit in the best way.
For these systems from an experimental point of view it
is nearly impossible to anticipate:
- the consequences of the new policy,
- the system reactivity faced to unexpected situations:

important increase of the workload, breakdowns on
equipment,…

Therefore hospitals are confronted with problems relat-
ing to:
- the dimensioning of the different health care units

(type and number of resources),
- the understanding of the functioning of the system,

as well as the control and the minimization of health
costs,

- the efficiency improvement to increase the quality
of services: a better allocation of resources, the
length of waiting lists, the decrease in length of
stays, etc.,

- the analysis of interactions between the units within
the hospital organization,

- the characterization of the exploitation plan (new
management and piloting policies),

- the activity and benefit planning (study of the usual
and foreseeable workload) in order to anticipate
human, equipment and financial resources and to
meet patients’ health care needs (for example the
control and planning of admissions),

- the study of the system reactivity faced to particular
conditions (riskiness on hospital facilities, staff de-
crease, important increase workload).

In the majority of the studies in hospital management,
the various staff and equipments are considered as al-
ways available. This is not the case in reality. The
equipments are unfortunately prone to failures and are

inalienable during the maintenance actions; the staff
might not be always available (due to planning limited
by legislation for instance). Our approach could also take
into account problems concerning breakdowns and main-
tenance of equipments, but this aspect is not described in
this paper.

The depicted approach allows to use multi-modeling
during the modeling phases. It is possible to use several
diagrams of the UML methodology to generate one VLE
simulation model. Each diagram allows describing cor-
responds to an aspect of the considered system like
structural information or behaviors. It allows to describe
the different levels with various formalisms.

The problems are strongly correlated. Thus, for example
the study of a new management policy can be made with
a view to improve the system efficiency and the service
quality, and to emerge on to a new dimensioning of re-
sources. The finality of such studies is based on the im-
provement of the service quality.

The need of an a priori or a posteriori evaluation of the
system performances is essential. Providing to the man-
agers with tools allowing them to reproduce the func-
tioning of their systems seems an interesting idea. In-
deed, the possibility of testing several configurations or
different management and piloting rules would be useful
due to the complexity of these systems and the encoun-
tered problems. Solving these problems requires to use
adapted methods, techniques and tools. A study is per-
formed to evaluate each system. It leads to the imple-
mentation of a model dedicated to the system, which
cannot be used anymore (for another study or even for an
analogous system). The presented methodology consti-
tutes a proposal to overcome the problem relating to
non-reusable dedicated models.
In this study we focus on the reorganization of a chronic
renal dialysis unit.

3 MODELING TOOLS FOR HOSPITAL

SIMULATION

3.1 Methodology

The meta-models have been designed in order to imple-
ment the reengineering software component base and to
give a user guide of this base (model patterns). It is com-
posed of three subsystem: a logical subsystem: entities
constituting the system workload and generating their
activities; a physical subsystem owning all the physical
entities (resources / care facilities) that handle activities
generated by the system workload; a decision subsystem
receiving information and converting it into activities
(management and piloting rules). The explicit descrip-
tion of the meta-models does not fit within the scope of
this article.
The proposed meta-models (one for each subsystem) are
generic and have to be specialized to a system class, (for
example hospital management class). Subsequently from
the specialized model we have only to instantiate it in
order to obtain the dedicated model (in our case, the cor-

MOSIM’10 - May 10-12, 2010 - Hammamet - Tunisia

responding model to dialysis unit). Modeling step lies on
UML diagrams which are available in the majority of
modeling softwares. The XMI file generated to store the
model is used in MDA to generate generic and specific
patterns. These patterns will be parameterized to obtain
the simulation model.
Our methodology is divided into 3 steps (see Figure 1),
according to the object-oriented paradigm.

1. Object-oriented Analysis and Design
This step is implemented for generic class of problems
starting from the proposed meta-model. The aim is to
create patterns with UML (allowing to automatically
generate a reusable components base). A MMI skeleton
(MMI: Man-Machine Interface) is designed for end users
to elaborate their working model of the studied system.

2. Specialization
This step is implemented by a consultant who models the
problems and determines if an existing model can be
reused or customized.

3. Instantiation
This step is implemented by the end user, who models
his configuration and tests several scenarios.

Simulation
Model

generic field case

ImplementInstantiateSpecialize

Meta
Models Model Dedicated

Model

Figure 1. Generic methodology process

The target simulation language is VLE.

3.2 Methodological process

The proposed methodology is composed of six steps (see
Figure 2. Details of the generic methodology). Step 1 con-
cerns the analysis and the specification of the meta-
models. The step 2 is performed for a generic system
class relating to domain analysis; for example, the hospi-
tal management class (comprising systems with common
characteristics). It consists in the specialization of the
meta-models. The result of this domain analysis can be
reused when a particular system of this system class is
studied. In that case, only steps 3 to 6 are performed.

Step 1 defines the classes of studied systems (problems
and objectives of the study) and concerns:

- the design of the meta-models for each subsys-
tem (physical, logical and decision),

- the elaboration of the glossary and the user
guide.

Step 2 initiates the domain analysis; the aim is to design
the specialized model from the meta-models

We identify the characteristic entities relating to the
studied system class. The relationships that the domain
experts detect as fundamental elements are characterized.
The domain analysis consists in identifying and taking
into account all the common entities and in matching
these entities into families (or classes) according to their
common characteristics, functionalities and behaviors.
Then we identify the links between the generic entities
that are essential for the domain analysis.

We allocate entities to one of the three subsystems (logi-
cal, physical or decision subsystems) [Combes94,
Combes01, Combes06]:

• logical subsystem: a majority of flows that require
the services of a hospital are relating to patients.
These flows generate tasks (or activities) which are
specific to each medical unit and correspond to the
treatments undertaken by the physical subsystem
entities;

• physical subsystem: confronted with the diversity
of terms used in the different levels of the hierar-
chy, we put together the divided subsystems in
terms of “functional and care units” and “adminis-
trative unit” respectively. From the perspective of
administrative and functional units, we are able to
take into account a descending or ascending hierar-
chical analysis of the physical subsystem. Each of
these units has: staff resources (medical staff, ad-
ministrative employees); material resources (func-
tional elements, care units, conveying means,
rooms/wards…) etc;

• decision subsystem: it contains a set of rules con-
cerning several logical and/or physical subsystem
entities. The decision subsystem has the scope in:
- modifying the physical subsystem evolution by

its decisions,
- determining the patient’s flow path (route ac-

cording to his needs and the system state),
- applying the global and local rules of the

physical subsystem resources.

MOSIM’10 - May 10-12, 2010 - Hammamet - Tunisia

�

For one given system

� Identification and
description of entities
for logical and physical
subsystems (list of
needed resources
according to medical
treatments)

� Specification of global
functioning (management
and piloting rules…)

Study the characteristics of
overall systems and analysis
of the problems related by

these systems
Design of the meta models and

specification in using UML
class diagram

Logical
subsystem

Physical
subsystem

Decision
subsystem

Structural and functional analysis:

Object oriented approach

Deduction of object oriented generic model :
� Classification of entities according to common
characteristics
� Relationship identification of inheritance, aggregation and
association,
� Specification of entities working in their class

Specialized
UML Diagrams

entity characteristics, their functions, their
relationships and their working

Templates of
analysis
guide

The functioning model The simulation model

Description of Elementary
process/task and human and
equipment resources needed.

Decision making: the dynamic
routing of patient flow, resource

management and piloting
(supervisor role)...

Computer simulation

Studied system performances
(interpretation of results)

Model
modifications

(if necessary)

Listing of all common entities

belonging to

Elaboration of the
glossary corresponding
to technical terms used

Definition of problems to
solve and fixed objectives
for the study

Determination of tools
and methods adapted to
the problem to be solved

Analysis
guide

Elaboration of user
guide dedicated to
the component base

+ glossary
+ user guide

For overall systems

St
ep

 1
St

ep
 1

St
ep

 2
St

ep
 2

St
ep

 4
St

ep
 4

Required data:
Input data of the model

Step 5Step 5

�Description of flow path (in using
UML state machine diagrams
and/or data mining approaches):

− identification of patient’s categories
(or classes),

− Duration of tasks and/or treatments
by patient’s categories,

− Ranges relating to the patients’
flow paths.

All the possible flow
paths throughout the
physical subsystem

objects

Data analysis
using data mining

MDA translator
XMI

St
ep

 3
St

ep
 3

Analysis of information
system - databases

user interface

Data
Warehouse

Performance
indicators with

multidimensional
analysis

OLAP cubes

Input data:
parameters of

simulation objects

SCB :
Software

component
base

Meta
Model of

the physical
subsystem

Definition of the
studied system class

Meta
Model of
the logical
subsystem

Meta
Model of

the decision
subsystem

Specialized
model

Dedicated
model

Simulation
model

Instantiation

Figure 2. Details of the generic methodology

Step 3 studies the existing information system
The existing medical information system of the hospital
is analyzed in order to design a data warehouse dedicated
hospital supply chain and its user interface (if it is possi-
ble and it depends of available data).

Step 4 specifies the patients’ flow paths
Two cases are taken into account. In the case where reli-
able databases are available and a data warehouse has
been designed, data mining approaches can be used to
identify the patients’ profiles (or categories) and the as-
sociated flow path. The model of the patients’ flow path
can be deduced, but also, the estimation of the tasks du-
ration and/or treatments by patient’s categories. In fact,
we do not have determinist range and each patient can be
a particular case (undetermined range).
In the other case, we have to specify patients’ flow path
using UML diagrams (in particular the dynamic dia-
grams). In this article, we present this second case. In
this step, we specialize the generic model concerning the
logical subsystem.

Step 5 allows to elaborate the dedicated model of a par-
ticular system from the results of the domain analysis. In
order to specify the functional and decisional models
(working rules), we use the analysis guide, the glossary

and the user guide of the software component base. This
step consists in instantiating the specialized models. The
resources required by a state or each activity are de-
scribed. Therefore, the adapted patterns are parameter-
ized to generate the simulation model. The different
models need to be validated. In this step we also collect
input data of simulation models (parameters and input
data) and the performance indicators to be observed.

In Step 6, the simulation model is generated and a vali-
dation phase is performed.

3.3 Using UML for specification (link between Step

2 and step 5)

The proposed modeling methodology uses UML formal-
ism and is based on:
- the use case diagrams to describe the scenarios of each

use case,
- the class diagrams (see figure 3) for the analysis and

specification of entities constituting the system from
the corresponding to the meta-model from which it is
specialized and instantiated),

- the state machine diagrams to describe the internal
behavior of each class and the sequences of activities.

MOSIM’10 - May 10-12, 2010 - Hammamet - Tunisia

Most UML modeling software can store diagrams using
the XMI formalism. This explains why no specific soft-
ware is required by this approach. The related XMI file
is used to generate simulation patterns with the MDA.

Then the use of MDA approach allows to avoid the
learning of a new language (simulation) and to reduce
the adaptation phase of (generic) UML models to the
specificity of the simulator. The translation from the
UML diagram into the simulation language is mostly
automatic. This approach facilitates the evolution of the
model. Indeed we have just to modify UML diagrams in
order to obtain the corresponding simulation model.

4 THE VLE FRAMEWORK

In this section, we present the VLE simulator and the
underlying paradigm and formalism. This simulator re-
lies on strong concepts and intrinsically provides multi-
modeling capabilities. This perfectly matches the objec-
tive of the simulation and modeling tool that we are cur-
rently implementing. This is also largely facilitated by
the available extensions such as UML statecharts.
4.1 VLE

VLE [Quesnel09] (Virtual Laboratory Environment) is a
software and an API (Application Programming
Interface) which supports multimodeling and simulation
by implementing the DEVS abstract simulator.
VLE is oriented toward the integration of heterogeneous
formalisms. Furthermore, VLE is able to integrate spe-
cific models developed in most popular programming
languages into one single multimodel.
VLE implements the Dynamic Structure Discrete Event
formalism (DSDE) (Barros97) which provides the ab-
stract simulators for Parallel DEVS (PDEVS) (Zei-
gler00) for the parallelization of atomic models and Dy-
namic Structure DEVS (DSDEVS) (Barros96) for the
M&S of systems where drastic changes of structures and
behaviors can occurred over time. DSDE abstract simu-
lator gives to VLE the ability to simulate distributed
models and to load and/or delete atomic and coupled
models at runtime. VLE proposes several simulators for
particular formalisms. In addition to DSDE, for instance,
cellular automata, ordinary differential equations, differ-
ence equation, UML statecharts and so on.
This framework can be use to model, simulate, analysis
and visualize dynamics of complex systems. His main
features are: multi-modeling abilities (coupling hetero-
geneous models), a general formal basis for modeling
dynamic systems and an associated operational semantic,
a modular and hierarchical representation of the structure
of coupled models with associated coupling and coordi-
nation algorithms, coupling of pre-existing models, dis-
tributed simulations, a component based development
for the acceptance of new visualization tools, storage
formats and experimental frame design tools, and free
and open source software.

4.2 STATECHARTS EXTENSION

A state diagram [Harel87, Harel98] is a type of finite
state automaton used in system modeling and in com-
puter science. It describes the dynamical behavior of
systems. In UML language, this kind of diagram is
known as UML statechart [OMG09] (or UML state ma-
chine). It is an object-based variant of Harel statechart.
Modeling systems based on discrete and finite states is to
represent the system as discrete states and transitions
linking states. Transitions represent changes of state on
triggering events and may support actions. An action is a
function applied on the system state other than discrete
states. In the case of UML statecharts, actions represent
the methods of objects. UML statecharts have the char-
acteristics of both Mealy machines [Mealy55] and
Moore machines [Moore56]. They support actions that
depend on both the state of the system and the triggering
event, as in Mealy machines, as well as entry or exit ac-
tions (see Figure 3), which are associated with states
rather than transitions, as in Moore machines.
UML statecharts introduce the new concepts of hierar-
chically nested states and orthogonal regions, while ex-
tending the notion of actions and events. A state (called
superstate) can be decomposed to several states (sub-
states). The events are handled by substates or superstate
if the substate does not prescribe how to handle the
event. UML statecharts also introduce the AND-
decomposition: a composite state can contain two or
more orthogonal regions and each region can be active
simultaneously.

Figure 3: UML statechart with two states and a transition

representing the different available concepts in VLE
platform

Every state can have optional entry actions (e. g. ac-
tion1), which are executed upon entry to a state and op-
tional exit actions (e. g. action2), which are executed
upon exit from a state. When an event occurs, a transi-
tion can handle it or a state (e. g. action3). In this last
case, an action is executed without state change. The
concept of activity is introduced to define a continuous
action in state. While the state is active, the activity is
executed.
A transition can also be triggered on a condition: the
guards. Guard conditions are boolean expressions evalu-
ated dynamically based on the value of extended state
variables and event parameters. Moreover, when an
event occurs, the state machine responds by performing
actions and an action can be a generation of another
event instance.
In VLE, all concepts are defined except for hierarchi-
cally nested states and orthogonal regions.

MOSIM’10 - May 10-12, 2010 - Hammamet - Tunisia

5 AN APPLICATION: THE MODELING OF A
CHRONIC RENAL DIALYSIS UNIT

The aim of this study was to show one application of our
modeling and simulation tool, in the particular case of a
chronic renal dialysis unit. The description of the work-
ing system is due to the article of R.M. Korabick [Kora-
bick78].
With the methodological framework we have modeled a
medical unit specialized in renal dialysis treatments. This
pathology is severe. The patients’ scheduling is a critical
component of management because the chronic character
of the pathology obliges them to come several times a
week to have a treatment. The normal scheduling of the
treatment is:
1) The patient is installed and connected to the machine
by a nurse (25 minutes),
2) The treatment lasts 8 periods of 30 minutes. Between
each period, the nurse comes to monitor the good execu-
tion of the treatment (10 minutes without corrective ac-
tion),
3) The patient is disconnected from the machine by the
nurse (25 minutes).
In addition, before each treatment, the nurse has to pre-
pare the machine (30 minutes). After each treatment, she
has to clean the machine (30 minutes).
To insure the good quality of the treatments, corrective
actions are done on each dialysis machine every 4, 8 and
20 treatments. A corrective action requires one or two
nurses; it is done during the treatment monitoring.
The labor cost is typically the most substantial cost for
the operating unit. R.M. Korabik [Korabick78] has eval-
uated this part to 30% to 40% of the total expenses. So it
would be interesting to control labor cost and to increase
equipment utilization through good scheduling of em-
ployees and patients.

5.1 Expression of hospital needs for the chronic renal
dialysis

The first step consists in the capture of functional needs.
The UML formalism taken into account is:
- Packages in order to identify the different models

(for simulation, scheduling…),
- Use cases which describe for each package, the de-

scription of system behavior of user point of view,
- Diagram of classes for each use case,
- Diagram of sequences which document each use

case (scenarios of each use case).

Identification of packages

We identify 4 packages (see figure 2):
- “Patient Management” modeling management of

patients’ medical records and patients’ appointment,
- “Dialysis treatment” describing the working of a

chronic renal dialysis,
- “Logistic” taking into account the management of

equipment resources,
“Staff management” concerning the management of staff
timetable and work notice board for each staff catego-
ries.
The corresponding use cases of each package are given
in figure 3.

Patient
management

Dialysis
treatment

Logistic

Staff
management

Figure 4: UML Packages for the current study.

Medical
secretary

Appointment
management

Management of
patient medical

records

<<extends>>
New patient

Nurse

Planning of
assignment

Dialysis
management

Use cases: Patient Management

Use cases : Dialysis treatment

Executive
Nurse

Staff
management

Planning of
staff

resources

<<extends>>
New employee

Use cases: Staff management

Nurse

Controls
of dialysis
machine

forecast of
maintenance

<<extends>>
failures, anomalies

Use cases: Logistic

Dysfunction
management

Patient

Patient

Assignment
of dialysis
machine

Set up
Controls Clean up

<<include>>
Begining

and end of
session<<extends>>

Patient

Figure 5: The use cases

MOSIM’10 - May 10-12, 2010 - Hammamet - Tunisia

Functional Unit
<<Resource>>

Name
Capacity
Opening slot

Create()
Modify()

Resource
<<Resource>>
N°Resource
Name
Capacity
Availability

Create()
Add()
delete()
Request()
Release()

Staff resource

Abscence-forecast()
Abscence-unexpected()

Material resource

Law of failure arrival
Average duration of failure
Frequency of maintenance
Duration of maintenance
Nb of Use
Nb of Control

Start up()
Break down()
Maintenance()
NbofUse:Calculate()
NbofControl:Calculate()

At disposal

Begining Date
End date
Begining hour
End hour

Update()

0..1

1..*

Treatment
<<Activity>>

N° Treatment
Name
/Duration

Create()
Modify()
Calculate()

Execute

0..* 1..*

Patient
<<Flow>>

N°Patient
Name
Age
Category

Create()
Modify()
Delete()

Dialysis Planning

N°Planning
Capacity
Slot of dialysis
/Availability

Create()
Modify()
Cancel()

Date
Hour

Begining hour
End hour
Date
Picking up()
Update()

Stay

1

1

1

Stay

Step

Patient PresenceWithout Patient Presence

{disjoint}

Access

Supervision

Control

Dialysis

End Treatment

Begining session Clean up

{d
is

jo
in

t}

{disjoint}

Patient

Request

1..5

1..*0..*

Pre-rinse()
Rinse()
Post-rinse()

Set Up()

Corrective

Corrective-Blood-Pressure-Drop()
Corrective-Coil-Leak()
Change-Bath()

Access()

generate

0..31

Suspend()
Resume()
Dialyze()

Terminate()

Supervise()

Monitor()

a ssi gn

Appointment

{d
is

jo
in

t}

Type

Duration
law of service

Figure 6: The UML classes diagram

Now, we present (figure 4) the classes diagram corre-
sponding at the use cases “dialysis treatment”.

5.2 Specification of the dynamic model

The aim is to formalize the scenarios involving the ob-
jects exchanging messages and the internal behavior of
the classes.
Figure 5 presents a scenario of the use case “planning
assignment”

Figures 6 and 7 describe the internal behavior of the
class called “Treatment”.

Waiting resources

Arrival of patient

Ready

Monitoring

Validate(Begining date)/
Traitement.create()
Nurse �N°Ressource

Resources
assignment

Entry: NbOfUse:Calculate()
Do: Access(patient)

After 24±3min/
Release(nurse)

Dialysis

Do: Dialyze(patient)

Monitoring Control

E
ve

ry
 1

/2
h

[N
b

of
 c

o n
tr

ol
B

et
w

ee
n

[1
,8

]
]/

R
e q

ue
st

 (
nu

r s
e)

A
ft

er
 4

h
an

d
N

bO
fC

on
tr

o l
=

8/
R

el
ea

se
(n

ur
se

)

/R
el

ea
se

(m
ac

hi
n e

)

End-traitement

Do: Terminate(patient)

Pre-rinse

Do: Pre-rinse(machine)

After 25±3min
Request(nurse)

Rinse

Do: Rinse(machine)
After 5min/
Release(nurse)

After 45minPost-rinse

Do: Post-rinse(machine)

/R
e

qu
e

st
(M

a
ch

in
e

)
&

R
e

q
u

e
st

(n
u

rs
e

)

Set up

Do : Set up(machine)

After 30±3 min/
Picking up(patient)

^ r
es

o u
rc

e.
 m

ac
h i

ne
�

 N
°R

e s
ou

rc
e

^r
e s

ou
rc

e
.n

ur
s e

 �
 N

°R
e s

ou
rc

e

Figure 7: Dynamic diagram of “treatment” class

MOSIM’10 - May 10-12, 2010 - Hammamet - Tunisia

Usual Control
Do : Monitor(patient)

Blood Pressure
Entry: Suspend(dialysis)
Do: Corrective-Blood-Pressure()
Exit: Resume(dialysis)

[Nb of use≡20] and
[Nb of use NOT≡8]
/Release(2enurse)

Coil leak

Bath change

Do: ChangeBath(poste)

First 1/2 hour [Nb of Control=1
and Nb of Use≡4]
/Request(2e nurse)

[Nb of Control<>1
or Nb of Use NOT≡4 or 8 or 20]
/Release(nurse)

[Nb of use ≡8]
/Release(2enurse)

Do: Corrective-Coil-Leak()

[Nb of use NOT≡8] and
[Nb of useNOT≡20]
/Release(2enurse)
Release(nurse)

[Nb of use ≡20]

[Nb of use NOT≡20]
/Release(nurse)

/Release(nurse)
Figure 8 : Dynamic diagram of "Monitoring control"

macro-state

5.3 Simulation

The models can be automatically translated into the
simulation language. In this case, only the most special-
ized classes are taken into account to generate simulation
model. Statechart diagrams are used to create simulation
patterns to mimic the dynamic of the studied system.
The modeling tool implements a translator package,
which is used to generate the simulation model from the
UML diagrams (or XMI file). VLE facilitate this transla-
tion of UML diagram with its statechart extension.
Indeed, thanks to its underlying multi-model paradigm,
VLE permits to easily translate each package into a
model that can communicate with other models thanks to
input and output ports. Each of these models might in
turn be a composed-model or an atomic-model. Each
atomic-model might be expressed either directly in
DEVS or through one of the available extensions of VLE
(statecharts in the presented example). Moreover the
structured C++ syntax of VLE allows to easily modify
the simulation model.
The XML file needed for the parameterization is gener-
ated with the VLE simulation model. It allows to cus-
tomize/tune the model to evaluate several scenarios for
instance.
In this particular case, dealing with the reorganization of
a chronic renal dialysis unit, the performance indicators
are waiting times, idle time, number of patients, work-
load of nurse, schedule appointment...
A graphical interface could be implemented for the end
user in order to value the simulation model according to
the studied case, like number of dialysis machines, num-
ber of employees, reliability of equipments.

6 CONCLUSION

We have presented an application of our modeling tool
based on UML model to generate simulation models in
the case of a chronic renal dialysis unit.
With the use of UML, the proposed modeling tool is not
limited to the hospital domain and can be applied to the
industrial field.
All components, needed for the modeling methodology,
are implemented except for the decisional subsystem.
The latter is in progress for validation. The decision sub-
system needs to improve integration of performance
measure for the system.

7 REFERENCES

Barros, F. J., 1996, Dynamic structure discret event
system specification: Formalism, abstract simulators
and applications. Winter Simulation, 13(1):35-46.

Barros, F. J., 1997. Modeling formalisms for dynamic
structure systems. ACM Transactions on Modeling
and Computer Simulation (TOMACS), 7:501-515,
october.

Combes C., 1994, “Un environnement de modélisation
pour les systèmes hospitaliers” , Ph.D. Thesis, Uni-
versity of Blaise Pascal, Clermont-Ferrand II,
France.

Combes C., 2000, “Contribution of modeling and simu-
lation to health care systems”, Heath and System
Sciences, Edition Hermès Science, N°4, pp 1-31.

Combes C. N. Meskens, H. Fei, M. Gourgand, 2006, “A
methodological framework dedicated to hospital
supply chain management with the combination of
data warehousing and data mining”, ILS’06, Interna-
tional Conference on Information Systems, Logistics
and Supply Chain, Lyon France, May 15-17.

Harel, D., 1987, Statecharts: A visual formalism for
complex systems. Science of Computer
Programming, 8(3):231–274, June.

Harel, D. and M. Politi, 1998, Modeling Reactive
Systems with Statecharts, the STATEMATE
Approach. McGraw-Hill. p. 258.

Korabik R. M., 1978, “A New Approach to Operational
Efficiency for Chronic Renal Dialysis”, Winter Sim-
ulation Conference I.E.E.E, Highland, pp 659-662.

Law A.M., W.D. Kelton, 1999, “Simulation Modeling
and Analysis”, Edition Mac Graw Hill Book Com-
pany.

Mealy, G., 1955, A Method to Synthesizing Sequential
Circuits. Bell Systems Technical Journal. pp. 1045–
1079.

Moore, E.F., 1956, Gedanken-experiments on Sequential
Machines. Automata Studies, Annals of
Mathematical Studies, 34, 129–153. Princeton
University Press, Princeton, N.J.

Mukerji J.and J. Mille, 2001, MDA Guide Version 1.0.1,
Overview and guide to OMG's architecture,

MOSIM’10 - May 10-12, 2010 - Hammamet - Tunisia

http://www.omg.org/cgi-bin/doc?omg/03-06-01,
2001.

 OMG (Object Management Group), 2004, Unified
Modeling Language Specification, Version 1.4.2,
http://www.omg.org/cgi-bin/doc?formal/04-07-02.

OMG (Object Management Group), 2009, OMG Unified
Modeling Language (OMG UML), Superstructure
Version 2.2,
http://www.omg.org/spec/UML/2.2/Superstructure/P
DF, February.

Quesnel, G., R. Duboz and É. Ramat, 2009, The Virtual
Laboratory Environment - An Operational
Framework for Multi-Modelling, Simulation and
Analysis of Complex Systems, Simulation Modelling
Practice and Theory, (17), 641-653, April.

Zeigler, B. P., D. Kim, and H. Praehofer, 2000. Theory
of modeling and simulation: Integrating Discrete
Event and Continuous Complex Dynamic Systems.
Academic Press.

