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Abstract: The operating theatre consists of two parts: a set of operating rooms and a 
recovery room. It is known as  not only one of the most expensive sectors, but one of the most 
complex sectors to manage and schedule particularly since we consider all the hazards, the 
large number of actors, the surgical act standardization and coordination difficulties. In this 
study, we aim to solve the daily scheduling problem for an operating theatre composed of 
several identical operating rooms and recovery beds by taking into account their availability. 
The objective is to obtain an operating program minimizing the daily cost of the operating 
theatre in a limited time. The open-scheduling strategy is implemented in this paper to 
schedule surgical cases. The problem is solved by a Tabu search meta-heuristic.  
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1. Introduction 
 
The optimization of the performance of an operating theatre is an extremely 
complex problem because it comprises multiple constraints, such as the schedule 
and the competences of specific surgeons as well as the availability of recovery beds 
[Dexter, 2002]. In this study, we focus on one of the short-term operating theatre 
management problems: a daily scheduling problem. The target problem is aimed to 
determine the schedule of surgical cases so as to fulfill the constraints of the 
recovery room and surgeons with an objective of minimizing the daily operating 
cost. 
 
Generally, two strategies are used to schedule surgical cases: one is the 
programming with time blocks reserved in advance; i.e., block-scheduling strategy, 
where a surgeon has a certain number of pre-reserved blocks of time, in which 
he/she can assign his/her surgical cases; the other one is the “open-scheduling” 
strategy, where no time-slot is reserved in advance and surgeons use all available 
operating rooms (ORs) indifferently. When the latter strategy is applied, some 
negotiation may be needed to avoid collisions. Considering that the “block-
scheduling” strategy can be regarded as a special case of the “open-scheduling” 
strategy, in this paper, the latter strategy is used to solve the daily scheduling 



problem. What’s more, since many hospital managers aim to improve efficiency of 
the operating theatre while reducing the operating cost, the goal of this study is to 
develop an efficient method to schedule surgical cases into this surgical suit with 
minimum daily operating cost. As the salary of surgical staff (surgeons, nurses, 
anesthetists, etc.) and the cost of equipments used in operating rooms are much 
higher than those in the recovery room [Fei et al., 2007], the objective function of 
our scheduling model is formulated as the minimization of the weighted sum of the 
latest completion time among all the surgeries from the operating rooms (makespan 
of the operating rooms) and the latest completion time of the recovery room 
(makespan of the recovery room, which is also the makespan of the operating 
theatre). Moreover, an auxiliary criterion is taken into account to select a final 
solution among equally rated/ranked solutions on the basis of the main criterion. 
This objective function is defined as the minimization of the occupation time of the 
recovery room plus the average occupation time of patients in operating rooms 
weighted by the ratio (ω ) between the cost per hour spent in the operating room 
and that spent in the recovery room. 
 
In order to solve the daily scheduling model, Fei et al. [Fei et al., 2007] proposed a 
Tabu search method based on that proposed by Sriskandarajah and Wagneur 
[Sriskandarajah, 1991]. It results that this method can find a solution of good quality 
within reasonable execution time. However, since the Tabu search is a stochastic 
method, it obtains a feasible solution without guarantee of quality. Therefore, it is 
better to execute the Tabu search procedure several times to improve its robustness. 
In this paper, our objective is to compare the performance of this metaheuristic with 
different parameters in order to design an operational tool for the hospital managers. 
If the proposed method is implemented in hospitals, the hospital managers have a 
choice between two solutions: one is to execute several times the Tabu search with 
long runtime in each loop; the other is to execute many times the Tabu search with 
short runtime. In addition, both of them must be finished in a predetermined time. In 
this paper, our contribution is to give some clues to make efficient use of available 
processing time in the context of this time-constrained decision-making problem. 
The scheduling model and the solution method are taken from Fei et al. [Fei et al., 
2007], but the computational results and clues are not given in their work. 
 
This paper is divided into four parts. The first part describes the scheduling model 
and related notations. Afterwards, the Tabu search procedure is proposed to solve 
the problem. In the third part, shown are some experimental results based on 
randomly computed data. This paper ends up with some conclusions and 
perspectives. 
 
2. Model description and notations 
 
Below are the hypotheses to be considered for constructing the daily scheduling 
model: 

• All the cases are assigned to an operating theatre in advance. 
• We suppose an “open-scheduling” strategy. 



• The instrumental and human resources, except surgeons, are always available. 
A surgeon cannot undertake two surgical cases at the same time. 

• All the operating rooms are opened simultaneously, and the time horizon is one 
day. 

• All patients are ready to have surgery; i.e., since each patient is normally 
hospitalized the day before his surgery, he/she is supposed to be ready to have 
surgery whenever possible. 

• A major characteristic of the problem is that, if there is no bed available in the 
recovery room (RR) at the end of his/her surgical operation, then the patient 
stays in his/her operating room until one recovery bed (RB) is released or is 
transferred directly to his/her room if he/she regains his/her consciousness. In 
the latter case, the patient has spent all his/her recovery time in the operating 
room. The recovery beds are identical; i.e., a patient can be transferred to any 
available recovery bed. 

• Emergency cases are not taken into account (we assume that emergencies are 
assigned to a dedicated room). What’s more, once a surgical case is started, it 
cannot be interrupted (preemption is not allowed). 

• The cost of one opening hour of the operating room is much higher than that of 
recovery room (the ratio isω=5.8). 

• The setup time, consisting of the time for cleaning OR and that for making 
recovery beds, is not considered. It is noteworthy that the setup time doesn’t 
depend on the operation sequence in specificities of the Belgian healthcare 
system because the cases of nosocomial infections are reported at the end of the 
day. Consequently the setup time might be indirectly considered by artificially 
increasing the operating durations so as to include that setup time.  

 
Some researchers have devoted themselves to the study of operating rooms daily 
scheduling problems [Dexter, 2002], [Fei et al., 2004], [Jebali et al., 2006], 
[Kharraja et al., 2002], [Sier et al., 1997]. However, as far as we know, few of them 
take into account the impact of the limited number of recovery beds on the 
efficiency of an operating program. There are some analogies between the operating 
theatre and the production workshop. Since many references related to the 
production scheduling problems have been explored, we based our study on them to 
solve the operating theatre scheduling problem. In fact, the daily scheduling problem 
considered in this paper is similar to a hybrid flow-shop model with two stages when 
regarding surgical cases as “jobs”, operating rooms and recovery beds as “identical 
parallel machines” at two stages respectively. Unlike the classical production hybrid 
flow-shop scheduling problem, the operating durations in these two stages are not 
independent. Since the hybrid flow-shop problem is NP-hard, the involved problem 
is NP-hard as well. In fact, no efficient method can be found to systematically find 
the optimal solution for all (or even real life) instances of the NP hard problems in a 
reasonable amount of processing time. Therefore, many researchers focus on 
developing heuristic methods to generate a feasible solution with good quality in a 
reasonable execution time [Sriskandarajah, 1991]. We are also interested in 
developing an efficient heuristic method for the daily scheduling problem with an 
“open scheduling” strategy.  



 
Traditionally, the objective of the classical hybrid “flow-shop” scheduling problem 
is to minimize the makespan, i.e. the completion time of the last job at the last stage. 
However this criterion is not sufficient for the daily scheduling problem described in 
this paper because the fact that one opening hour of the operating room costs much 
more than one opening hour of the recovery room must be taken into account while 
solving. What’s more, one overtime hour is more expensive than a regular one. 
Thus, our objective is to minimize the weighted sum of the makespans of operating 
rooms and of the operating theatre. The auxiliary criterion is formulated as the 
minimization of the occupation time of the recovery room plus the average 
occupation time of patients in operating rooms weighted by the ratio (ω ) between 
the cost of one hour spent in the operating room and one hour spent in the recovery 
room.  
 
For a scheduling day, N patients are ready to enter the operating theatre composed of 
M1 identical operating rooms and M2 identical recovery beds. 
 
Notations are as follows: 
 

e : The stage of the flow-shop, operating room (e=1) or the recovery room 
(e=2) 

Ω  : The set of surgical cases awaiting scheduling 
π  : A feasible schedule, composed of a sequence of patients passing through 

operating rooms and the recovery room  

[ ]ikπ
 

: The ith patient of the sequence k 

)(e
iC  : The completion time for the case )( Ω∈ii  at stage e. The time at witch 

the patient leaves the operating room (e = 1) or the recovery room (e = 2) 

)1(
is  : The arrival time for the case i at the first stage. It’s the beginning of the 

operation if all resources are available 

)2(
is  : The arrival time for the case i at the second stage. It’s not always the 

beginning of the recovery time because when the patient is blocked in the 
operating room after his operation, he begins to regain his consciousness 
there. 

[ ]ikπ∆
 

: A delay resulting from the bottleneck in recovery room. 

[ ]
)(e

ik
tπ  : The theoretical time spent by a patient at stage (e) 

[ ]
)(' e

ik
t π  

: The practical time spent by a patient at stage (e) (due to a delay [ ]ikπ∆ ) 
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max
C  : 

The completion time for all cases at stage 1 of the scheduleπ , 

}max{ )1()1(

max
Ω∈= iCC

i
. 

)2(

max
C  : 

The completion time for all cases at stage 2 of the scheduleπ , 

}max{ )2()2(
max Ω∈= iCC i . 

f : The objective function of the scheduleπ , )2(
max

)1(
max* CCf += ω  

whereω  is the ratio between the costs of one hour spent in the operating 
room and one hour spent in the recovery room. 

f' : The auxiliary criterion, used to select the final solution among solutions 
with the same value of f 

)2(
max

)1( )(*' CiCaveragef i +Ω∈= ω  

 

 
Figure 1: Illustration of our notations 

 
For better comprehension, our notations are illustrated in Figure 1. Using these 
notations, the daily scheduling problem is described as follows: 
 
Each patient i is treated by the specific surgeon chi with a pre-estimated duration 

)1(
it in an operating room and then is transferred to the recovery room and stays there 

until he regains consciousness, unless there is no recovery bed available in the 
recovery room when the operation is finished in the operating room. In this case, the 
operating room is still occupied by the patient i after his/her operation until he leaves 



or one recovery bed becomes available; i.e., the recovery time )2(
it  can be shared 

between the O.R. and the recovery room.  
 
3. Scheduling surgical cases with a Tabu search procedure 
 
This section describes the Tabu search method and its application to a daily 
scheduling problem for the operating theatre. 
 
Developed by Glover [Glover, 1986], the main idea of the Tabu search method is to 
use a tabu list to keep the latest performed movements in order to avoid being 
trapped by a local optimum. The name “Tabu list” given by Glover came from the 
fact that visiting a solution recently explored is forbidden. Once a movement of 
Tabu search is performed, its inverse movement will be kept in the tabu list. The 
tabu list aims to prevent (short) cycles in the search space. The size of the Tabu list, 
either fixed or variable [Taillard, 1990], is an important parameter of the Tabu 
search method: too small, the algorithm cannot escape from local optima attractive 
basin; too large, all movements in the neighborhood might be labeled as Tabu (i.e. 
stored in the Tabu list) and the method is frozen [Hoos and Stützle, 2005]. 
 
Moreover, a basic aspiration strategy [Glover, 1989], [Glover, 1990] is implemented 
in the classical Tabu search procedure: a movement, forbidden by the Tabu list, may 
be chosen if it leads to a solution with a better cost than the best ever found. 
 
Algorithm 1: Tabu Algorithm  
(1) Initialization 
(2)  Generate the initial solution 0x  ; 0

* xx =  ; )( 0
* xfc ←  ; *x is the best 

ever found schedule, whose objective value is  *c  
(3)  0←k  ; TabuList =Ø 
(4) while stopping-condition is not satisfied 
(5)  Choose the best ( kx ) with minimum )( kxf which is not a member of 

TabuList, unless *cck < is satisfied, among the neighborhood of kx , 
)( kxV , generated by taking one possible movement from  kx . 

(6)  ←+1kx best ( kx ) 
(7) if *

1)( cxc k <+ then 
    { 1

*
+← kxx , )( 1

*
+← kxcc } 

(8)  1+← kk  
(9)  Update (TabuList) 
 
In this algorithm, a movement corresponds to the application of an operator that 
allows the Tabu search procedure to move from a feasible solution to another 
neighboring solution (so-called neighbor). The neighborhood of one solution is 
composed of all the solutions reachable by one application of the chosen operator to 
this point. 
 



According to the literature, the basic Tabu search method described above can be 
improved in some ways as follows: 

• Intensification strategy: Several solutions, selected among the best solutions 
found, are used to generate new solutions close to the optimum. [Crainic et al., 
1993]. 

• Diversification strategy: unlike the previous strategy, it consists in memorizing 
the appearance frequency of each element of the visited solutions. These 
frequencies are used to calculate some penalties to keep the Tabu procedure 
away from zones already explored [4], [Rochat and Taillard, 1995].  

• Aspiration strategy: various more sophisticated strategies may be implemented 
instead of the basic/classical aspiration strategy. 

 
In this paper, the Tabu search method is customized to deal with the daily open-
scheduling problem under consideration. In this custom-made Tabu search (CTS) 
procedure, a decomposition heuristic (HD) procedure is developed to construct an 
initial feasible solution (details of the HD procedure can be found at point 2 of the 
CTS procedure hereafter). 
 
Adaptations introduced into the CTS procedure are as follows: 
 
1. Encoding strategy: a feasible solution is represented by an array composed 
of five vectors.  
V1: a vector of size N, representing the sequence of patients at the first stage; 
V2: a vector of separation between the different OR. The size is (M1 – 1) and the 
numbers of cases among V1 affected to the first OR, next the second OR … until the 
(M1 – 1) OR are indicated; 
V3: a vector of size N, representing the distribution of patients in the recovery beds 
at the second stage. The patient order represented in this vector corresponds to that 
in the vector V1. One corresponding to the first RB, two the second … 
V4: a vector of size N, representing the sequence of patients in the recovery room; 
V5: a vector of separation between the different recovery beds. The size is (M2 – 1) 
and the numbers of cases among V2 affected to the first RB, next the second RB … 
until the (M2 – 1) RB are indicated. V5 is redundant, it can be inferred from V3. 
However it is convenient for simplifying detailed explanation about our encoding 
scheme. 
 

Array 1 2 3 4 5 6 7 3 1 2 1 2 1 2 1 1 5 3 7 4 2 6 4 
Vectors 

1V  2V  3V  4V  5V  

Figure 2: An encoded (feasible) solution 
 
Figure 2 shows a (feasible) solution encoded by the coding strategy described above. 
This array represents a feasible daily schedule for an operating theatre. The size of 
V2 and V5 is 1, thus the operating theatre is composed of two ORs and two RBs in 
the recovery room. V2 shows the location of the separation between the two ORs (i.e. 
3 operations in the first OR when considering the above mentioned example). Thus, 



V1 represents an operating order in operating rooms, where the first three cases (1, 2 
and 3) are scheduled in the first OR in this order, and the remaining four cases are 
scheduled in the order (4, 5,6 then 7) in the second OR. V3 indicates that four 
patients go to RB number one and three to RB number two. After being operated, 
patients 1, 3, 5 and 7 are transferred to the first RB in the order (1-5-3-7) and the 
others are transferred to the second RB in the order (4-2-6). V5 confirms that four 
patients go to RB number one. Once values of all elements within every array are 
determined, a feasible daily operating schedule is then obtained. 
 
2. Initial solution: the initial solution is generated by the HD procedure as 
follows: first, the patients are randomly assigned to the operating rooms. When all 
patients are assigned, the patient sequence in each operating room is determined, and 
therefore, the vector V1 is also determined. Second, each patient leaving his 
operating room is assigned to a randomly selected RB, available at that moment, 
following the operating order at the first stage; i.e., operating rooms. 
 
Our Tabu search procedure uses the following strategies of a neighbor: the “First fit” 
strategy, selecting the first solution among the neighborhood, is used; and the “Best 
fit” strategy; choosing the best solution found to be better than the current one is 
implemented. 
 
Neighborhood definition: a two dimensional neighborhood is constructed as follows: 
 

a) On the first dimension, just operating rooms are taken into account: the 
neighborhood exploration consists in moving a patient, randomly chosen, to 
one of the other rooms and test all the feasible positions to determine the best 
position for this patient in this room (“Best fit” strategy). If a generated 
solution is found to be better than the best ever found solution, it becomes the 
current solution (“First fit” strategy), and then we start the next iteration in 
the Tabu search, otherwise go to step b. 

 
b) On the second dimension, the recovery room is considered: the same 

exploration as above is made for the recovery beds.  
 
c) If the best solution found till the last iteration has been modified in the first 

two steps then it becomes the current solution, else the current solution is set 
as the better one between those found in the first two steps. 

 
The stochastic aspects of the Tabu search appear, firstly in the construction of the 
initial solution, and secondly, in the neighborhood structure. 
 
3. Evaluation function: the objective function consists in the minimization of 

the weighted sum of makespans: )2(
max

)1(
max CC +ω  . 

If several solutions have the same value, we distinguish it by the secondary 

criterion: )2(
max

)1( )(*' CiCaveragef i +Ω∈= ω  



4. Tabu list management: the reverse movements are stored in the Tabu list. 
This list is managed with a FIFO rule (First In, First Out) and its size is arbitrarily 
fixed at 7. 
 
5. Aspiration criterion: if a movement is banned by the Tabu list but leads to a 
better solution than the best ever found solution, then this movement will still be 
accepted. 
 
4. Experimental numerical results 
 
All experiments, are executed on a PC compatible (CPU: PENTIUM IV 3.0 MHz, 
Memory: 512 MB, Operating System: Windows XP), the compiler is Microsoft  
Visual C++ 2003.  
 
4.1 Data 
 
The experimental data are as follows (durations are in minutes): 

• Operating duration ti(1) of the case i is generated from a Pearson III [Combes et 
al., 2004] distribution rule between [30, 150] with the mean 60 and the standard 
deviation 15. 

• The recovery duration ti(2) of the case i is generated from a Pearson III 
distribution rule between [30, 120] with the mean equal to the corresponding 
case’s operating duration ti(1) minus 10. This way of generating the recovery 
duration is used by some other authors as well [5], [6], [Dexter, 1995], except 
that a Pearson III distribution rule is used instead of a lognormal one in this 
paper. The standard deviation is equal to 15. 

• The ratio between the cost of one opening hour in the operating room and the 
cost of one opening hour in the recovery room is ω = 5.8; 

• There are 6 ORs and 10 RBs in the operating theatre under consideration; 
• All surgical cases are randomly assigned to 8 surgeons in advance; 
• The number of cases is 50. 

 
To be complete further numerical experimentations have been made, but we don’t 
present it here. 
 
4.2 Numerical results 
 
Numerical results are based on only one instance of the scheduling problem. 
 
We have compared the cost of the solutions obtained by the Tabu search with the 
lower bound proposed by Fei et al. [4] for the same daily scheduling problem. This 
lower bound is calculated as follows: 
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Notations are as follows: 
• i0 is a patient that begin his/her operation at the beginning of the day and that 

recovery at last. 
• SPT(M2) is the minimum sum of the achieving time of the M2 patients at first 

stage with the shortest operating time. 
 
The lower bound, in our example, is equal to 20654. However it is noteworthy that 
this cost corresponds to a non-feasible solution. Practically, the cost of the best ever 
found solution is 26181. 
 
Three scenarios, running with the same execution time as that taken by one 
replication of a Tabu search with 300000 steps, have been tested in experimentation. 
These scenarios, respecting the limitation of number of steps, are characterized by 
different number of replications and number of steps. We observe the variations of 
performance of the Tabu search when the number of runs (replications) decreases 
(6000, 30, 20) and the number of steps in each run increases (50, 10000, 15000). 
Therefore, these three tested scenarios are as follows: 6000 replications of a Tabu 
search with 50 steps (short runs); 30 replications with 10000 steps (medium runs), 
and 20 replications with 15000 steps (long runs). When several runs are performed, 
we start from different initial solutions (using different seed for the random number 
generator) for the selected instance of the problem. 
 
Run # Steps # Runs Average Std. Dev. Time (sec.) 

Short 50 6000 48986 8342 0.2 

Medium 10000 30 34629 8118 40 

Long 15000 20 32777 4941 60 

           
Run Minimum Maximum Q1 Median Q3 

Short 31235 43368 43036 47272 52935 

Medium 26181 55405 29123 32691 36237 

Long 26619 90882 29623 31030 35264 

Table 1: Numerical Results 
 
The results show that the best values, for medium and long runs, are taken close to 
each other. The limited-time decision to execute the short runs or the medium runs 
or the long runs is fixed, by construction (#Steps * #Runs = Const), at approximately 
20 minutes.  
 
 



 
Figure 3: Short vs. long runs box plot 

 
The results shown in Table 1 are as follows: the number of steps (# Steps) per 
execution (replication), the number of executions of the Tabu method (# Runs), 
some statistics of the objective values obtained over the runs (average, standard 
deviation, minimum, maximum, first quartile, median, third quartile). The box plots 
of the objective value are shown in Figures 3, 4 and 5. 
 

 
Figure 4: Short vs. medium runs box plot 

 
The results given (in Table 1) show that the scenario with long runs performs better 
in average than that with short runs. Furthermore, this conclusion is confirmed by 
the box plot represented in figure 3, and the results of Mann-Whitney non-
parametric statistical test, which rejects the assumption of equality at 99% with a 
significant test at 0. In addition, the results in Figure 4 show that the scenario with 
medium runs performs better than that with short. This result is confirmed by the 



results of the Mann-Whitney test rejecting the assumption of equality at 99% with a 
significant test at 0. 
 
By contrast (cf. Figure 5), no significant difference is found between the medium-
runs and long-runs group (the Mann-Whitney test doesn’t reject the assumption of 
equality at 95%, with a significant test at 0.7589). 
 

 
Figure 5: Long vs. medium runs box plot 

 
5. Conclusions and some perspectives 
 
In this paper, a daily scheduling problem of the operating theatre including the 
management of recovery beds has been presented. This scheduling problem is 
modeled as a hybrid “flow-shop” scheduling problem with two stages and an 
efficient dedicated Tabu search method has been described. 
 
Comparing the results obtained by the Tabu search with the lower bound, we have 
shown that our method can provide the hospital managers with a good quality 
solution in a reasonable time. Furthermore, we conclude that the medium-runs group 
is the best strategy because it not only obtains better results than the short-runs 
group, but also has a performance similar to the long-runs group. In addition, as the 
medium-runs group leads to more exploration of the search space than the long-runs 
group, there is a higher probability to find a better solution. In the light of those 
results, we can conclude that we have improved the metaheuristic, which was used 
by [2] as local operator improvement. 
 
In our future research, to go out of the Belgian healthcare context, we will take into 
account the setup time between two surgical cases, especially the necessary time for 
changing materials and preparing the equipments. We will also take into account the 
availability of other necessary human and material resources in our model. We will 
tune the Tabu search using several sizes of the Tabu list (either static or dynamic 



sizes) and several instances of the problem so as to judiciously balance robustness 
and efficiency in our time-limited decision-making context. 
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