The Fitness Function And Its Impact On Local Search Methods

D. Duvivier, Ph. Preux,

C. Fonlupt and D. Robilliard
Université du Littoral,

Laboratoire d’Informatique du Littoral,
BP 719, 62228

Calais Cedex, France,
duvivier@lil.univ-littoral.fr

Abstract— The fitness function is generally defined
rather straightforwardly in evolutionary algorithms
(EA): it is simply the value of the function to opti-
mize. In this paper, we argue and show that embedding
more information in the fitness function leads to a sig-
nificant improvement of the quality of the local optima
that are reached. The technique is developed here on
NP-hard problems and demonstrated on the Job-Shop-
Scheduling problem. The technique is first used in a
mere steepest descent hill-climber in order to assess its
usefulness. Then, it is shown that its use in an EA
also improves its performance in terms of the quality of
solutions that are found.

Keywords— combinatorial optimization, evolutionary
algorithms, objective function, job-shop scheduling
problem

I. INTRODUCTION

Hill-climbers are general local iterative search meth-
ods which mainly based their decision on the fitness of
the current point and the fitness of the neighboring
points. While the choice of the neighbor to visit next
is not a trivial issue, it gets still worse when all neigh-
bors are equally fitting, that is when the hill-climber
has reached a “plateau”, or when it has found a lo-
cal optimum. This paper proposes a way to overcome
this problem. We illustrate the technique on A'P-hard
problems.

First, we need to define exactly what we call a
“plateau” :

Definition 1 (plateau) Given o a point in the search
space, and v a value taken in the range of values of
the criterion C'. Given 8, the set of points ¢’ in the
neighborhood of the current solution o.

Considering X a subset of S defined by ¢’ € X iff
C(o") = v, X is a plateau iff it contains at least 2
elements (i.e. | X |> 1).

When solving a combinatorial optimization prob-
lem, we typically want to optimize one quantity, the
main objective of the search (length of a tour in the
Traveling Salesman Problem (TSP), time to complete
a certain set of jobs in the Job-shop Scheduling Prob-
lem (JSP) for example). Most often, when these prob-
lems are tackled with hill-climbers (either very sim-

E-G. Talbi

Laboratoire d’Informatique Fondamentale
de Lille,

URA CNRS 369,

Cité scientifique,

59655 Villeneuve d’Ascq Cedex, France,
talbi@lifl.fr

ple hill-climbers or more sophisticated ones like Tabu
search or evolutionary algorithms), the objective func-
tion that is used to decide which point to visit next is
only related to the quantity to optimize. For prob-
lems that have been extensively studied, we are aware
of some good on-side properties that accompany a
good tour for the TSP or a good schedule for the JSP.
Though they might appear to be redundant with re-
gards to the main quantity that is being optimized,
these on-side properties might prove useful when the
main objective is not sufficient to discriminate among
neighbors of the current point. When a hill-climber is
on a plateau, these subsidiary properties might help
to choose the next point to visit. This technique can
also be used to escape from a local optimum: when
the main quantity can not be improved any further,
guiding temporarily the search using an other quan-
tity can be fruitful. Obviously, this quantity has to be
relevant and has to be “more accurate” with regards
to the other quantity, that is, it has to provide new
information.

In the case of the TSP, we know that the shortest
path is likely to be composed of edges among the short-
ests. Thus, when confronted with a set of neighbors,
it can be fruitful to choose one in which the average
length of edges is shorter than the other ones. Using
this subsidiary property will typically provide better
tours at the end of the search. We have applied this
basic idea to an other A/P-hard problem [6]: the Job-
Shop Scheduling Problem.

In this paper, we discuss various “on-side” prop-
erties that can be used to improve the choice of the
neighbor to go to. As was suggested in [4], [5], [3],
we show that taking this information into account sig-
nificantly improves the quality of the points that are
found. To enable a better understanding of what is
going on in the algorithm, we develop our idea with a
steepest descent hill-climber using a mutation-like op-
erator. In the last section of this paper, we show that
the approach is also successful when embedded in an
evolutionary algorithm.

3650

3600 1

3550 1

3500 —

Plateaux

3450

C(x)

3400

3350

3300

3250

3200
0

Time

Fig. 1. The evolution of C(z) during a typical run of a steepest
descent algorithm along the iterations. z can be regarded
as the current point during a steepest descent hill-climbing
or a Tabu search, or as the best point of the population of
an evolutionary algorithm.

II. OBJECTIVE FUNCTION
A. Basics

In this paper, we consider minimization problems
defined as:

given a quantity C(z), find a solution X, in the set
D such that X, = mingep{C(z)}.

Of course, the results presented in this paper can be
straightforwardly applied to a maximization problem.

Using an iterative search algorithm to solve a prob-
lem of this kind, the usual idea is to design the objec-
tive function F as returning the value of the quantity
to optimize for the point under consideration z:

We have plotted the evolution of C'(z) during a typ-
ical run of a steepest descent algorithm minimizing
C(z) (see Fig. 1). The plot exhibits several plateaux.
On each plateau, the algorithm has difficulties to be
guided in the neighborhood of the current solution. In
this situation, using other information to guide the
search can be useful. This extra information (sec-
ondary criterion) serves to discriminate points that are
seemingly identical (identical from the point of view of
the main criterion C(z)) though being truly different.

We have applied this method to solve different AP-
hard problems such as the JSP, and the TSP.

In order to simplify the study of this technique and
to be able to assess its effect without multiplying the
parameters, we have chosen a very simple algorithm:
the steepest descent hill-climber (SDHC for short).
Once the technique is validated on the SDHC, we show
that it can be used in a non-deterministic hill-climber

(NDHC for short) and in an EA and improves the
quality of the points that are reached.

In the SDHC, there are two main parameters: the
operator and the selection function. The operator
swaps two operations and reschedule operations that
needs to be rescheduled. Using this “simple” opera-
tor, we can study the selection function itself. The
objective function is then the only information that
guides the heuristic in the search space. One of the
main goals of embedding several (secondary) criteria
is to improve the objective function to perform a better
choice among the neighbors of the current solution.

B. The discriminating power of a criterion

A (secondary) criterion C” is useful if it can discrim-
inate points that have the same value for the main
criterion C'. This “discriminating power” is thus an
important characteristic of a criterion and a proper
definition is required.

We introduce a value denoted ¢4(C’) that embeds
the “discriminating power” of a certain criterion C:

Definition 2 (discriminating power)

We introduce ¢4(C’), as the number of different val-
ues that are taken by the criterion C’ on a plateau of
the main criterion C.

Then, we define ¢4(C’) as the average number of
é4(C") on a set of solutions.

This latter value is called the discriminating power

of C".

A criterion C' such that ¢4(C’) ~ 1 is not a good
criterion since — on average — there is only one value of
C' on each plateau of C: this means that C’ can not
be used to guide the heuristic on the plateaus of C'.

III. APPLICATION TO THE
JOB-SHOP-SCHEDULING PROBLEM

Let us now turn to the use of this technique on an
example, namely the Job-shop Scheduling Problem.
There are several variants of the JSP (see for example
[2], [13], [15], [8]). We consider here the simple JSP
where J jobs, each composed of M operations are to
be realized on M machines. Each operation must be
realized on a single machine. Each job has an opera-
tion which has to be performed on each machine. A
schedule indicates at each time slot and on each ma-
chine, the operation being currently processed.

The makespan of a schedule is the total time of re-
alization of the J jobs, it is defined as follows:

Definition 3 (makespan) Let us denote Ep,(z) the
completion time of the last operation performed on
machine m according to the schedule z. Then we de-
fine the makespan C.,,.(z) of the schedule:

Crax(?) = Ep(:
() = max Fm(z)

The objective of the JSP considered here is to min-
imize the makespan.

Let us define two terms that are in common use in
the JSP community:

Definition 4 (busy-schedule) A schedule =z such
that Cnax(2) = makespan(z) is called a busy-schedule
if, for each time slot ¢ where 0 <t < Crax(2) there is
at least one operation running on a machine.

Definition 5 (active schedule) A schedule is said to
be active iff none of its operations may be started ear-
lier without modifying the order of execution of the
operations on the machines.

It is known that the optimal schedule is active [7].

Definition 6 (critical operation) Given a schedule
x, a critical operation is one that, if delayed, would
increase the makespan of z (if reordering the opera-
tions is not allowed).

Hence, critical operations are good targets for local
optimization of a schedule. The number of critical
operations found in a schedule z is denoted C,,(x).

We also define the function H of a schedule z after

[9]:
M
Hy = Z By (x)

where Ep, () is the completion time of the last oper-
ation performed on machine m according to the sched-
ule z.

A. Basic objective function

For the simple JSP, aiming at minimizing the
makespan, the usual idea is to design the objective
function as returning the makespan of a schedule (e.g.

C(z) = Coax()):
.7:1 (l‘) = C’max(m)

B. Discriminating power of different criteria for
the JSP

Several criteria may be used as a clue of the good-
ness of an individual. A lot of work has still to be
done, but we can discuss here criteria that have shown
usefulness when incorporated into the objective func-
tion.

We apply a SDHC on five instances of the simple
JSP so as to compute the value of ¢y of two criteria

TABLE 1
THIS TABLE GIVES THE MEAN VALUE AND THE STANDARD
DEVIATION OF ¢y FOR TWO CRITERIA AS MEASURED ALONG
wWALKS OF THE SDHC USING F;. FOR EACH INSTANCE, 500
EXPERIMENTS WERE PERFORMED STARTING FROM RANDOM
INITIAL SOLUTIONS.

Instance o4 (H>) é1(C.y)
Aver | Std- | Aver | Std-
(pg) | dev | (py) | dev
mt10x10 3.92 | 056 | 260 | 0.34
mt20x5 639 | 1.16 | 469 | 0.88
ta0l 6.85 | 1.31 | 3.89 | 0.75
abz7 27.69 | 5.93 | 20.53 | 4.98
ta3l 33.19 | 6.67 | 23.03 | 5.29

along the walks (¢f. Table I). The criteria that are
used are Hy as well as C,,.

The value of ¢y is greater than one for the two stud-
ied criteria. This means that these criteria can dis-
criminate points on the plateaux of the makespan. So
they can be useful in the objective function. Further-
more, @y (H3) is always greater than ¢4(C.,), indicat-
ing a higher discriminating power for Hs than for C,,.

C. Correlation between criteria

In order to determine which criterion might be in-
teresting to incorporate into the objective function, we
have computed the correlation between each criterion
and the makespan. Thus, we know which criterion is
relevant with the goodness of a point. The correlation
is computed over a set of points drawn at random and
over the set of local optima reached at the end of the
walks. The SDHC is started from each of the points
drawn at random and uses the objective function (F;)
which is only based on the makespan. This gives us at
most 500 local optima.

The figures are displayed in Table II. The corre-
lation between C.., and Hs is very high, while the
correlation between C.., and C,, is rather loose for
points drawn at random (inexistent when considering
local optima only). So, according to these values, H
appears to be a good criterion to incorporate in our
objective function while C,, might provide some indi-
cation.

D. Different objective functions

In the previous section, we have introduced several
criteria that seem to be interesting to incorporate in
the objective function. Let us now define several func-
tions so as to evaluate the usefulness of these criteria
while solving the JSP. In the following functions, we

TABLE II
THIS TABLE GIVES THE AVERAGE VALUE OF CORRELATIONS
BETWEEN DIFFERENT CRITERIA ON THE FIVE INSTANCES. FOR
EACH INSTANCE 500 POINTS ARE SAMPLED.

Correlation Cmax/H2 | Cmax/Cop | H2/Cop
Random points 0.862 0.364 0.304
Local optima 0.866 0.094 0.052

define K; (where 1 < i < 3) so that the makespan re-
mains the most important criterion (main criterion):
a variation of the makespan is always greater than the
sum of the variations of the other criteria (secondary
criteria) for all possible busy-schedules of a given in-
stance of the JSP.

® First of all, we can incorporate the Hs heuristic in
the objective function. We call this function Fa(z):

Fa(x) = K1 X Cuax(2) + Ha(2)

K is an upper bound for Hy(z) over all the possible
busy-schedules of the current instance of JSP.

® The number of critical operations may be used as
a clue of the goodness of an individual: it is com-
monly held that the less critical operations a schedule
contains, the better the schedule is. So we define an
objective function based on this criterion. We call this
function Fs(z):

Fs(z) = Ko X Coae(z) + G, ()

K is an upper bound for C,,(z) over all the possible
schedules of the current instance of JSP.

® To assess whether the added information is relevant
and does help the algorithm, we introduce a function
where the additional criterion is replaced by a random
noise. We call this function Fy4(z):

.7:4(1) = K3x Cmax(;l‘) + Random(K’s)

where Random(K3) is a pseudo-random number gen-
erator (uniform distribution) that returns integer num-
bers between 0 and K3z — 1.

® We can also combine two criteria in the same ob-
jective function. Hence, we use an objective function
which combines the makespan, the Hs heuristic, and
the number of critical operations. We call this function

Fs(z):
f3(l) = [\72 X[{l meax(r) + 1{2 XHQ(I) + C;p(l‘)

® In all functions F; up to Fs, the makespan is the
most important criterion. Finally, we define a function

in which the main criterion is Ho. We call this function

Folx):
fo(l‘) = [\70 XHQ(I) + Cmax(r)

where Ky is an upper bound for C,,.(z) over all the
possible busy-schedules of the current instance of JSP.

In the following section, we have set K; to the max-
imum value of each criterion:

o Kg = D+1 where D i1s the sum of the durations
of all the operations of the instance: it is easy to
see that the makespan of busy-schedules is always
smaller than this value,

o K1 = M x D?: this value is an immediate conse-
quence of the definition of the previous value,

o Ky = JxM: there are J x M operations in the
current instance of the JSP, so that there are no
more than Jx M critical operations,

o K3 = Kg: using this value, the number given by
Random(K3) are of the same order of magnitude
than the makespan.

In fact it is possible to define these values precisely,
but this is useless for our application: all we need
is to define upper-bounds of the criteria so that the
makespan remains the main criterion.

IV. RESULTS

We use the benchmarks of the orLIB [1]. In our
test-suite, the size of the instances ranges from 10x10
to 30x 15. Our SDHC has been tested with the six
objective functions Fy to F5. For each instance, a set
of 500 initial solutions are drawn at random. Then, the
six functions are tested on this set of solutions. The
results we have obtained are displayed in Table III.

For every instance of our test-suite, Fs provides the
best results in terms of the quality of the local optima
that are found. Clearly, the more information embed-
ded in the objective function, the better the results.
The worst objective function is generally F; (where
Cmax 18 the only criterion). Fy, the function which in-
cludes a random noise, performs at least as well as F,
generally better. Fy where C.,,, 1s not the main crite-
rion, competes rather well with ;. The comparison
between the results of Fa (where Hj is the only sec-
ondary criterion) and the results of Fy (where Hy is
the main criterion) shows that H is a good secondary
criterion but a bad main criterion.

The objective functions may be sorted according to
their average performance as follows :

f3>f2>f5>f42f02f1

where F3 > F5 means that F3 performs better than
Fs.

TABLE III
THIS TABLE SUMS UP OUR RESULTS USING THE SDHC. THE
INSTANCES ARE IDENTIFIED WITH THEIR NAME IN THE ORLIB.
THE SECOND LINE GIVES THE SIZE OF THE INSTANCE. THE THIRD
LINE GIVES THE VALUE OF THE OPTIMUM IF IT IS KNOWN, A
RANGE OF IT WHEN IT IS UNKNOWN. THEN FOR EACH FUNCTION,
THE TABLE GIVES THE AVERAGE VALUE, THE STANDARD
DEVIATION, THE MINIMUM VALUE AND THE MAXIMUM VALUE OF
THE MAKESPAN OVER 500 EXPERIMENTS. SEE THE MAIN TEXT
FOR THE DEFINITION OF THE DIFFERENT FUNCTIONS.

Instance mt mt
10x10 | 20x5 ta0l abz7 ta3l
Size 10x10 | 20x5 | 15x15 | 20x15 | 30x15

Optimum | 930 | 1165 | 1231 | 656 | 112
Fo Aver | 1073 | 1362 | 1465 | 779 | 2156
StD | 40 44 42 17 45
Mini | 958 | 1238 | 1371 | 735 | 1999
Maxi | 1073 | 1515 | 1605 | 846 | 2305
F1 _Aver | 1085 | 1351 | 1467 | 782 | 2150
StD | 39 46 46 18 43
Mini | 991 | 1228 | 1344 | 721 | 2036
Maxi | 1214 | 1506 | 1626 | 853 | 2300
F> Aver | 1069 | 1331 | 1440 | 770 | 2119
StD | 37 42 44 18 45
Mini | 974 | 1229 | 1338 | 725 | 1990
Maxi | 1205 | 1452 | 1609 | 839 | 2278
Fs Aver | 1068 | 1328 | 1439 | 770 | 2118
StD | 37 43 45 19 44
Mini | 974 | 1229 | 1337 | 727 | 1990
Maxi | 1205 | 1452 | 1609 | 839 | 2278
F; Aver | 1083 | 1349 | 1459 | 782 | 2150
StD | 4l 45 44 18 44
Mini | 971 | 1217 | 1352 | 729 | 2036
Maxi | 1207 | 1488 | 1632 | 861 | 2300
Fs Aver | 1081 | 1347 | 1464 | 778 | 2144
StD | 39 46 46 19 43
Mini | 971 | 1222 | 1344 | 728 | 2021
Maxi | 1214 | 1506 | 1626 | 853 | 2295

We have embedded the objective functions F1, F»
and F3 in a simple (non-deterministic) hill-climber
(NDHC for short), on the same set of initial solutions.
The results are similar to the results of the SDHC
(see Table IV), but NDHC needs less evaluations than
SDHC.

The objective functions are sorted according to their
average performance as follows :

.7:3>f2>.7:1

Clearly, these results show that our approach is rel-
evant and actually useful on real problems.

V. APPLICATION TO AN
EVOLUTIONARY ALGORITHM

In order to demonstrate that this approach can be
used in different hill-climbers, we have embedded the
same set of objective functions in an evolutionary al-
gorithm and run it on the same set of instances.

TABLE 1V
THIS TABLE SUMS UP OUR RESULTS USING THE NDHC. THE
INSTANCES ARE IDENTIFIED WITH THEIR NAME IN THE ORLIB.
THE SECOND LINE GIVES THE SIZE OF THE INSTANCE. THE
THIRD LINE GIVES THE VALUE OF THE OPTIMUM IF IT IS KNOWN,
A RANGE OF IT WHEN IT IS UNKNOWN. THEN FOR EACH
FUNCTION, THE TABLE GIVES THE AVERAGE VALUE, THE
STANDARD DEVIATION, THE MINIMUM VALUE AND THE MAXIMUM
VALUE OF THE MAKESPAN OVER 500 EXPERIMENTS.

Instance mt mt
10x10 | 20x5 ta0l abz7 ta3l
Size 10x10 | 20x5 | 15x15 | 20x15 | 30x15
Optimum | 930 | 1165 | 1231 | 656 | 172
F1 Aver 1084 1349 1460 781 2150
St.D 42 43 47 19 47

Mini 991 1239 1351 738 2020
Maxi 1233 1509 1600 853 2339
Fa Aver 1068 1330 1442 774 2129
St.D 39 48 45 19 44
Mini 955 1211 1354 732 2020
Maxi 1180 1473 1606 836 2271
Fs Aver 1067 1325 1440 774 2126
St.D 38 46 44 19 43
Mini 951 1215 1334 732 2020
Maxi 1180 1470 1606 836 2267

We have designed the EA as discussed in [4] and we
refer the reader to this reference for any further detail.
Our EA uses direct encoding, this means that the data
structure actually represents a schedule. We use a re-
combination operator based on the GA/GT crossover
introduced in [12]. The mutation performs a swap of
two operations and re-schedule all the operations that
needs to be rescheduled (due to the swap). Clearly, our
objective here is not to tune the EA to obtain the best
results. Rather, we simply aim at showing that the
same kind of improvements on the quality of the solu-
tions that are reached can be obtained. Thus, we use
standard population size, rate of application of opera-
tors and a ranking selection plus elitism. We will not
go into more details about it because it would require
a thorough presentation of the coding of solutions and
a description of the operators that are out of the scope
of this paper.

The results that were obtained to date are still par-
tial with regards to those presented earlier on the
SDHC (see Table V). However, it is again very clear
that the extra information does help the algorithm to
find better solutions. In all cases except one, the F3
function leads to the best performance. However, the
performance of Fs with regards to the mere Fj is not
so striking as for the SDHC.

TABLE V
THIS TABLE SUMS UP OUR RESULTS USING AN EA. THE SECOND
LINE GIVES THE SIZE OF THE INSTANCE. THE THIRD LINE GIVES
THE VALUE OF THE OPTIMUM IF IT IS KNOWN, A RANGE OF IT
WHEN IT IS UNKNOWN. THEN FOR EACH FUNCTION, THE TABLE
GIVES THE AVERAGE VALUE AND THE STANDARD DEVIATION OF
THE MAKESPAN OVER 10 RUNS.

Instance mt mt
10x10 | 20x5 ta0l abz7
Size 10x10 | 20x5 15x15 | 20x15
Optimum 930 1165 1231 656
Fi(z) Aver 986 1210 1328 719
St.D 17 16 22 5
Fo(z) Aver 987 1216 1310 719
St.D 15 18 23 15
Fs(z) Aver 978 1203 1317 706
St.D 17 23 12 6

VI. DISCUSSION AND PERSPECTIVES

In this paper, we have focused our attention on
the objective function used by hill-climbers in gen-
eral, evolutionary algorithms being one special case of
this general class of meta-heuristics. We have concen-
trated ourselves on the problem which is raised when
the search reaches a plateau of the fitness landscape.
Driven by its objective function, the hill-climber is
then totally unable to grasp on some information to
guide itself towards the next point to visit. We have
proposed a method to alleviate this problem which re-
lies on the use of on-side properties that go along with
the goodness of a solution with regards to the func-
tion being optimized. We have embedded this tech-
nique in two kinds of hill-climbers and demonstrated
its usefulness on the simple JSP. We think that this
technique can be used on any AP-hard problem on
which some knowledge is available (that is at least all
the “well-known” AP-hard problems). Furthermore,
there is no reason why this scheme would not be ap-
plied to any optimization problem. Even for satisfia-
bility problems, it is possible to define secondary cri-
teria (see [10] for example). We have also shown that
this technique can also be embedded into evolutionary
algorithms and still improves the quality of the local
optima that are found. Furthermore, this technique
does not require a lot of implementation work and the
computational cost can be low. (Obviously, this de-
pends on the kind of on-side properties that are used
and the cost to compute them.)

An other application of this technique in evolution-
ary algorithms would be to measure, and thus help
maintain, the diversity of the population, the key-
point of a good search for an evolutionary algorithm.
It is not always obvious to figure out whether two indi-
viduals are different or not: at the genotype level, two

individuals might seem different though representing
two really identical individuals (e.g. when individuals
are graphs, checking the equivalence of two graphs can
not always be efficiently done); in the same time two
individuals having the same fitness can be truly dis-
tinct. Using extra information as these on-side prop-
erties would help discriminate among the individuals
with the same value for their main objective but dif-
ferent with regards to their genotypes.

REFERENCES

[1] J.E. Beasley. OR-Library: Distributing test problems by
electronic mail. Journal of the Operational Research So-
ciety, 41:1069-1072, 1990. available via anonymous ftp on
mscmga.ms.ic.ac.uk:/pub.

[2] J. Carlier and P. Chrétienne. Problémes
d’ordonnancement, modélisation, complexité, algorithmes.
Masson, 1988. ISBN: 2-225-81275-6.

[3] D. Duvivier, Ph. Preux, C. Fonlupt, D. Robilliard, and
E-G. Talbi. Impact de la fonction objectif sur les perfor-
mances des algorithmesitératifs de recherche locale. In Pre-
mier congrés de la Soci€té Francaise de Recherche Opéra-
tionnelle et Aide a la Décision (ROADF’98), page 137,
Paris, France, January 1998.

[4] D. Duvivier, Ph. Preux, and E-G. Talbi. Climbing up NP-
hard hills. In [16], pages 574-583, September 1996.

[5] D. Duvivier, Ph. Preux, and E-G. Talbi. Genetic
algorithms applied to the job-shop scheduling prob-
lem. In FUCAM’96, Workshop on Production Plan-
ning and Control, Mons, Belgique, September 1996.
An extended version is available as report LIL-95-
4 from the Laboratoire d’Informatique du Littoral
(ftp://ftp-1il/pub/preux/papers/1il-95-4.ps.gz).

[6] Michael R. Garey and David S. Johnson. Computers and
Intractability; A Guide to the theory of NP-Completeness.
W.H. Freeman and Company, 1979. ISBN: 0-7167-1045-5.

[7] B. Giffler and G. L. Thompson. Algorithms for solving pro-
duction scheduling problems. Operations Research, 8:487—
503, 1969.

[8] GOThA. Les problémes d’ordonnancement. Operations
Research, 27(1):77-150, 1993.

[9] Alain Hertz and Marino Widmer. La méthode tabou ap-
pliquée aux problémes d’ordonnancement. Automatique,
Productique, Informatique Industrielle, 29(4-5):353-378,
1995.

[10] Kenneth A. De Jong and William M. Spears. Using genetic
algorithms to solve NP-complete problems. In [14], pages
124-132, 1989.

[11] R. Manner and B. Manderick, editors. Proc. of the Sec-
ond Conf. on Parallel Problem Solving in Nature. Elsevier
Science Publishers, Amsterdam, 1992.

[12] Ryohei Nakano and Takeshi Yamada. A genetic algorithm
applicable to large-scale job-shop problems. In [11], pages
281-290, 1992.

[13] B. Penz. Constructions agrégatives d’ordonnancements
pour des job-shops statiques, dynamiques et réactifs. PhD
dissertation, Université de Grenoble I, 1994.

[14] J.D. Schaffer, editor. Proc. of the Third International Con-
ference on Genetic Algorithms, Bloomington, IN, USA,
1989. Morgan Kaufmann, San Mateo, CA, USA.

[15] E. Taillard. Recherches itératives dirigées paralléles. PhD
dissertation, Ecole Polytechnique Fédérale de Lausanne,
1993.

[16] H-M. Voight, W. Ebeling, I. Rechenberg, and H-P. Schwe-
fel, editors. Proc. of the Fourth Conf. on Parallel Problem
Solving in Nature, Berlin, Germany, 1996. Springer-Verlag,
Berlin. Lecture Notes in Computer Science, vol. 1141.

