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Abstract. Combinatorial optimization problems are often used to test heuris-
tics. Among heuristics, stochastic ones deserve particular consideration be-
ing generally meta-heuristics that aim at performing reasonnably well on a
wide spectrum of problems. Among them, evolutionary algorithms have re-
cently appeared. Emphasis have been put on them by researches that have
shown that they are able to solve efficiently a wide range of problems, among
them combinatorial optimization problems. It is however not easy to compare
meta-heuristics between each others, and with other more classical heuris-
tics. However, this kind of cross-paradigm comparisons are much worthy.
In this paper, we perform a comparison of three kinds of algorithms (multi-
start hill-climber, TABU search, and evolutionary algorithm) on the job-shop-
scheduling problem using a series of well-known standard benchmarks. Not
surprisingly, hybrid algorithms perform better than pure algorithms. How-
ever, it is noteworthy that a multi-start hill-climber often outperforms the
other algorithms.

1 Introduction

Various stochastic meta-heuristics have been proposed which have generally proven
to be reasonnably efficient on various problems, among them, combinatorial opti-
mization problems. However, we think that current studies encompass two drawbacks
that are related : first, being meta-heuristics, these algorithms need some parameter
tuning (and these parameters are not only numerical ones, but also encompass pro-
cedures to move in the search space) which is not easy to perform in a quite thorough
or objective manner; second, comparisons between algorithms on a fair basis is not
so often encountered and is really difficult to perform. Expertize in the algorithms
that are to be compared is required for the comparison to be meaningful, a good
benchmark is needed, and an expertise knowledge is also required on the problems
that are used to be able to perform comparisons with state-of-the-art heuristics ded-
icated to this problem. Even if we restrict the comparison to one kind of problems,
it is still not easy to achieve the goal.

In our research group (PERFORM), we aim at performing this kind of cross-
paradigm comparison on a small set of problems (job-shop-scheduling, quadratic
assignment, and traveling salesman), and a variety of stochastic algorithms, the
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very core of them being evolutionary algorithms. Thus, we aim at comparing them,
studying their hybridization and how they can bring something to each other on
a cooperation basis. We also put a particular emphasis on simple algorithms that
are able to achieve good performance using only small amounts of computational
ressources. Following this line of work, we wish to assess the real capabilities of
evolutionary algorithms which are not yet so clear.

In this paper, we will restrict ourselves to only one problem, namely the job-
shop-scheduling on which we have obtained some significant results. In section 2, we
will precise the definition of the JSP we use as well as various ways of representing
solutions. In section 3, we detail the algorithms we have used so far. Section 4 gives
our current results compared with the best results known so far. To be able to
compare our results with others, we used the ORLIB benchmarks [Orl], that is a
set of around 150 problems of size ranging from simple instances to very difficult
ones. Finally, we will discuss these results and give our perspectives.

2 Definition of the JSP

There are various definitions of the JSP. Hence, before going any further, we define
the JSP we are interested in this paper.

Definition 1 (JSP) Given a set J of J jobs. Each job J; may be realized using
one plan of work among a set of possible plans {P;;}. Each plan P;; is composed
of a set of operations {O;jr} among which there exist constraints of fabrication,
resulting in a total order relation < between the O;ji, of each plan Ps;. Finally, each
operation Oy, may be performed on any machine of a subset of all M machines

Mijk = {(Mijkl,t,jkz)} C M in time tijkl«

Definition 2 (simple JSP) A JSP is said to be simple if there exists one and only
one plan to achieve any one job and if all the operations may only be performed on
a sole machine.

Definition 3 (extended JSP) A JSP is said to be extended if there exists several
plans to achieve one job, or if the operations may be performed on different machines.

In this paper, we focus ourselves on the simple JSP. In this case, each job has one
and only one operation that has to be performed on each machine. The following

conditions should be fulfilled:

C; : all jobs have to be realized;

Cy : any job is realized according its plan;

Cs : a plan is accomplished by realizing the operations it is composed of;

Cy4 : there is only one machine that is able to perform any operation;

Cs : the operations should be performed in a predefined order. Hence, the operations
of a job can not be executed concurrently on two different machines;

Cs : a machine can only perform one operation at a time.



We assume that the time of execution of a job is solely the sum of the times of
the execution of the operations of the job, and the waiting times. The goal is then to
minimize this total time elapsed between the beginning of the execution of the first
operation that is scheduled to the end of execution of the last scheduled operation.
This total time is called the makespan.

3 Representation of data for the JSP

In this section, we discuss various representations of data that may be handled by
the algorithms that we are focussing on. We restrict ourselves to the simple JSP as
long as we have only experimented with this class of problems yet.

Basically, two classes of representations of data may be envisaged for the JSP,
these two schemes of representation being qualified either as direct, or indirect.
Clearly, the goal of the JSP is to obtain a schedule of occupation of the machines
which indicates for each time slot of any machine if it is free or, if not, which operation
of which job is currently performed. We review several representations of each kind
and introduce a new direct representation that we use.

3.1 Indirect representation

When using an indirect representation, the data structure is not a schedule of oc-
cupation of the machines. A decoder is required to express the schedule given the
data structure. According to the information that is present in the data structure,
the decoder has more or less to work to be able to derive a schedule. Constraints are
handled by the decoder and guarantees the validity of the schedule that is derived.
The decoder may be non deterministic.

Representation 1

In this representation, the data structure is simply an array of J elements, each
one being the number of one job. The entire structure is a permutation of the integers
comprised between 1 and J [Bru93] [BUMK91].

0 ...J—-1
Job|...| Job
il g

The search space is limited to the set of the permutations of J integers, that
is of size J!. The decoder has a very limited set of information and should derive
much more to obtain valid schedules. Various decoders may be imagined, with a
variable degree of stochasticity. A very simple one would consider the data structure
as a priority list and would derive a schedule that always gives the priority to the
operations belonging to the most prioritary jobs.

Representation 2



In this case, the data structure is an array of J x M entries. Each job is assigned
a class of markers. All the markers associated to one job have the same tag (the job
number in our example, below). The markers are then shuffled in the array. We give
an example of such a representation for a 4 x 4 JSP:

0123456789101112131415
O1[3[1]o[2[3[2[1]o[ 3 [ 1 [2]2]3]0]

The decoder considers this array from the “left to the right”. For each entry, it
then schedules as soon as possible the next not-yet scheduled operation of the job
associated to the marker that has been found.

Representation 3

In this case, the data structure is an array of J elements, each one being consti-
tuted of a list of allocations of machines on which the operations are to be executed.

0o 1 .. M-1
Job|Op7|0p3

1 |m2|{m3

Job|Op6|0Op4|Opl
7 |m2|m4|ml

In this case, the decoder has to allocate time slots to the operations [BUMK91]
[Bru93]. Lines may be shuffled to change the priorities between jobs.

3.2 Direct representation

In the case of a direct representation, the data structure actually represents a sched-
ule of occupation of the machines. Hence, no decoder is required.

Representation 4

For each job, the list of machines and the time slots that are used to perform the
operations are given [Bru93].

0 1 . M-1

Job| Op7 | Op3
1 | m2 | m3
1,3 (13,17

Job| Op6|Op4| Opl

20,22|34,36| 51,55




For instance, the job 7 is constituted of the operations Op7 and Op3. Opera-
tion Op7 is executed on machine m2 from time 1 to time 3. The operation Op3 is
performed on machine m3 from time 13 to 17, ...

With regards to representation 3, time slots have been added. The assignment of
an operation consists in the association of a machine as well as a time slot taking in
consideration precedence constraints. The order of execution of operations is defined
at the level of operations.

Representation 5

In order to enhance the exploitation of the latest representation, we introduce a
new one. It is a two-dimensional representation, one dimension ranging among jobs,
the other one among machines. For each machine, we have the list of operations that
are performed with their time slot. For each job, we have, just as in representation
4, the list of operations tagged with their time slot.

Op8 Opl
M| Jobi Jobj
1,10 ... 151,55
Opbh Op4
M; | Jobi Jobj
11,31 oo (34,36

This representation makes it easier to detect available time slots. This charac-
teristic will be exploited.

4 Algorithms

For the moment, we have mainly worked with three classes of primitive algorithms:

1. hill-climber
2. TABU search
3. evolutionary algorithm

We have also investigated hybrid algorithms tinkered with these three algorithms
as building-blocks.

The hill-climber is considered as a very simple heuristic that does not require
heavy computational ressources, but which may easily be trapped in a local optimum.
We also used a variant of the basic hill-climber, namely a multi-start hill-climber.

The TABU search may be seen as a sophisticated hill-climber which may escape
from a local optimum [Glo89a, Glo89b]. We should emphasize the fact that we use
a very rudimentary version of TABU algorithm. Hence, we have mainly encountered
the (classical) problems of the sizing of the TABU list, and that of the handling of a
big neighborhood. Other mechanisms such as intensification and diversification have
not been used for the moment.



Evolutionary algorithms (EAs for short) are meta-heuristics based on J. Hol-
land’s genetic algorithms [Hol75] with which we, and others, have obtained good
results on various NP-hard problems such as graph partitioning [TB91], set parti-
tioning [Lev94], graph coloring [FF95b]. We will suppose here that the basic scheme
of evolutionary algorithms is known by the reader or propose him to read [FF95a]
before going on any further which, apart a presentation of evolutionary algorithms,
address the problems of their use for combinatorial optimization: the presentation
of evolutionary algorithms and all subtulties that are required to know to perform
efficient combinatorial optimization with them would require more than the vol-
ume of this whole paper. The issues are representation of solutions, operators, and
hybridization schemes.

Let us now turn to a detailed presentation of these algorithms.

4.1 Multi-start Hill-climber

Starting at a random point, the hill-climber tries to move uphill. When, after a
certain amount of attempts, it always fails to climb, the current best point is recorded
and the climbing is restarted from another point in the space, chosen at random. To
be more precise, it performs the algorithm displayed in figure 1.

In the work reported here, number_of _periods has been set to 20.

The delicate part in using a hill-climber lies in the choice of the move operator.
Using the representation 2, the basic move turns out to be a swap of markers.

The decoder takes the elements of the array, from the left to the right (in that
strict order) and schedules the corresponding operation as soon as possible. If possi-
ble, it uses a free time slot. If not, it is scheduled at the end of the current schedule.

4.2 TaABU search

The TABU search has only been used with the direct representation 5. The move
swaps two operations of two different jobs. The size of the neighborhood of each
point is JM (J —1)/2 which is quite cumbersome. The move swaps two operations of
two different jobs. The TABU searches the whole neighborhood to find the best non-
taboo move before actually moving, while the hill-climber takes the first favorable
move, a strategy that shortens the search a lot. We also use an aspiration criterion
that accepts a movement even though it is taboo if it leads to the best ever found
schedule (in this case, though accepted, the movement remains taboo).

We have also begun to experiment a variant of the TABU that only considers a
restricted neighborhood, chosen stochastically. In this case, only & JM neighbors are
taken into consideration. The movements are selected in order to reach uniformally
spared points in the neighborhood. We set &k to 2 in our current experiments.

The size of the taboo list is a critical parameter (since we use a fixed size of
this list) which has been set empirically, after numerous trials. The taboo list size
depends on the size of the problem (see table 1 for more details).



current_schedule := random_schedule

best_ever_found_schedule := current_schedule
best_schedule := current_schedule
for i := 1 to number_of_periods do
for j := 1 to threshold do
candidate_schedule := perform move from current_schedule
if candidate_schedule is better than current_schedule then
current_schedule := candidate_schedule
fi
done
if current_schedule is better than best_schedule then
best_schedule := current_schedule
if current_schedule is better than the best_ever_found_schedule then
best_ever_found_schedule := current_schedule
fi
else /¥ Trigger a new experiment */
best_schedule := current_schedule := random_schedule
fi
done

output ("I have found " best_ever_found_schedule)

Fig. 1. The multi-start hill-climber algorithm used. current _schedule is the makespan of
the schedule that is currently being worked on. best_schedule is the makepsan of the best
schedule found in the current period. best_ever_found schedule is the makespan of the
best schedule ever found since the algorithm has begun its execution. The value of the
upper bound thresholdis given in the caption of table 1.

4.3 Evolutionary algorithm

Operators As for the TABU, the EA only works with a direct representation and
we have used the representation 5.

Crossover We use a recombination operator largely inspired by the GA/GT crossover
introduced in [NY92]. This operator relies on Giffler and Thompson’s algorithm
[GT69] to produce an offspring given two parents. The principle of the GT algorithm
is as follows:

— C « first operation (which is not yet scheduled) of each job compute ECT of
operations € C'
— repeat
1. select O* € C' which has minimum ECT operations € C sharing the same
machine with O* and conflicting with O* (processing overlaps)
2. choose an operation O** € GG at random
3. schedule O** as soon as possible according to ECTs
4. update C' and ECTs

— until all operations are scheduled



current_schedule := random_schedule
best_ever_found_schedule := current_schedule
do
apply usual TABU search during threshold iterations
if current_schedule is better than best_ever_found_schedule then
best_ever_found_schedule := current_schedule
fi
while best schedule is enhancing enough
output ("I have found " best_ever_found_schedule)

Fig. 2. The TaBU algorithm that is used in this paper. The variable threshold has been
set according to the size of the problem and is given in table 1.

Problem size Size of the taboo list|Threshold
less than 10 x 10 23 1.810%
10 x 10, 15 x 5, 20 x 5 67 310*
15 x 10 97 4.510*
15 x 15 147 6.75 10*
20 x 10 131 610*
20 x 15 197 910*
20 x 20 257 1.210°
30 x 10 197 910*
30 x 15 289 1.3510°
30 x 20 387 1.810°
50 x 15 481 210°
50 x 20 641 310°
100 x 20 1279 410°

Table 1. The size of the taboo list and the threshold (with regards to the algorithm given
in figure 2) that are used in our experiments for different sizes of JSP problem. For the
multi-start hill-climber, the value of threshold is multiplied by 10.

where

Cis a “cut”
(7 is a set of operations conflicting with O*
ECT means Earliest Completion Time

Mutation The mutation performs a swap of two operations. To lead to a valid
schedule, the swap should only consider operations of two different jobs. It works as

follows:

1. choose a machine at random
2. choose two operations on this machine



3. among these two operations, compute the date of the earliest scheduled operation
and copy the operations that are scheduled before this date in the result

4. swap the two operations chosen at step 2

5. schedule, as soon as possible, all the operations that are not yet scheduled

Basic scheme of the EA Grounded on experimental evidences, we use a different
scheme of application of the operators than usually used. More precisely, the EA
performs as follows:

— initialize population at random
— while completion criterion is not fulfilled do
e reproduce
e apply operators on offsprings
e operated offspring form the next population

The operators are applied as follows:

1. pick up two individuals y; and x5 in the population

2. perform cross-over on them and stochastically (with bias 0.75) keep the best of
the two resulting individuals: x}

3. perform mutation on one individual among x; and x2 choosing one or the other
at random. This results in x5.

4. put x} and x4 in the population of offsprings

This non-conventional scheme of application of operators has proven to perform
better.

4.4 Hybrid algorithms

Various hybridization schemes are possible (see [PT95]). We have currently exper-
imented one scheme on the JSP, namely the synchronous hybridization which uses
a heuristic as a mutation operator. In this case, the hill-climber is used. The ba-
sic scheme of the hybrid algorithm is as seen before except for the application of
operators which proceeds as follows:

if (current generation is odd) then

apply GA/GT crossover and swap mutation
else

apply heuristic
fi

Again, this choice is grounded on previous experimentations.

Only direct representations have been used in the case of hybrid algorithms (all
algorithms then working on the same representation). The use of indirect represen-
tation has not proven to be as efficient as the direct representation.



The EA+hill-climber hybrid We have experimented a hill-climber, which is no
longer a multi-start hill-climber. It iterates a certain amount of moves, starting from
a schedule which is the individual it is applied on. The amount of moves that are
allowed while there is no improvement is set to 50. When this number of iterations
is reached, the algorithm continues to move as long as it climbs up.

Parameters The following table displays the value of the parameters that have

been used for the EA and the hybrid EA:

Population size 300

Reproduction strategy ranking (best individual has probability
1.25 to produce offspring(s), the worst
has probability 0.75)

Selection generational and elitism

GA/GT application rate 0.6

Swap mutation application rate|1.0

Hill-climber application rate 0.8

5 Results

We now turn to the results we have obtained with previously reviewed algorithms
(cf. table 2). In our benchmark suite, we use the Muth and Thompson’s problems,
the 8 Carlier’s problems, as well as 6 Lawrence’s problems, and 5 problems of big
size that have been generated using the problem generator of the ORLIB. The size
of the problems ranges from 6 x 6 to 100 x 20. In all cases, the table displays the
best makespan that has been found.

Generally speaking, the hybrid EA4+HC always performs better than the EA
alone. The hybrid has found the optimal schedule for some problems (MT6 x 6,
carl, car2, and car4) while the EA did only find the optimum for the mt6 x 6 which
is found by all the algorithms.

For their parts, the hybrid EA, MSHC, TABU and RNST all achieve the same
kinds of results; lying within a few percents from the optimal schedule. Taking a
glance at table 3 reveals that, when considering the distribution of points found in
a series of experiments with a given algorithm, it clearly appears that the standard
deviation of optimal schedules is very different from one algorithm to another, and
from one series of problem to another. The MSHC generally has a low to moderate
standard deviation, the EA and the hybrid EA a moderate one, the TABU based
heuristic (TABU itself and RSNT) quite a high one. Furthermore, for all heuristics,
the standard deviation obtained on the Carlier’s problem is much higher than the
standard deviation obtained for Muth and Thompson’s and Lawrence’s problems.
Hence, on the test-suite, the MSHC always finds the same quality of makespans,
while the TABU finds various quality of schedules.

Concerning the mean time of execution of the various algorithms, the very short
time of execution the MSHC is noteworthy. The EAs (both pure and hybrid) have

4 these problems are all available via anonymous ftp on:
ftp@ftp.univ-littoral.fr:pub/users/duvivier/benchmarks/jsp



Problem| Size optimum EA EA4+HC| MSHC TABU RSNT
mt6x6 | 6x6 55 55 55 55 (0) | 55(0) | 55 (0)
mt10x10| 10x10 930 953 (2) | 946 (2) | 947 (2) | 930 (0) | 949(2)
mt20x5 | 20x5 1165 1180 (1) 1180 (1)[1175 (<1)| 1165 (0) | 1178(1)
carl | 11x5 7038|7101 (<1)|7038 (0)| 7038 (0) | 7038 (0) | 7038 (0)
car2 | 13x4 7166 7576 (6) |7166 (0)| 7166 (0) | 7166 (0) | 7166 (0)
car3 | 12x5 7312 7594 (4) |7399 (1)| 7312 (0) | 7422 (1) | 7543 (3)
card | 14x4 8003 8423 (5) |8003 (0)| 8003 (0) | 8003 (0) | 8163 (2)
car5 | 10x6 7702 8047 (4) |7779 (1)[7738 (~0)| 7822 (2) | 7854 (2)
car6 | 8x9 8313 8699 (5) |8562 (3)| 8313 (0) [8438 (1.5)|9118 (10)
car? | 7x7 6558 - — | 6558 (0) 6573 (=0)| 79 (3)
car8 | 8x8 8264 - — 8294 (0)| 8407 (2) | 8407 (2)
1a01 | 10x5 666 - — | 666 (0) | 666 (0) | 666 (0)
1a02 | 10x5 655 - — | 655 (0) | 655 (0) | 655 (0)
1a03 | 10x5 597 - - 597 (0) | 597 (0) | 597 (0)
1a04 | 10x5 590 - - 590 (0) | 590 (0) | 590 (0)
1a05 | 10x5 593 - - 593 (0) | 593 (0) | 593 (0)
abz7 20x15 (6547 668) 757 690 682 - -
1a36 |15x15| 1268  [|1408 (11)|1297 (2)| 1281 (1) - -
20x20 (12177 1663) 1968 1788 1725 1778 -
30x15 (17647 1770) 2098 1916 1807 - -
30x20 (18507 2064) 2566 2262 2143 - -
50x15 | 2760 ||3225 (17)]2082 (8)| 2760 (0) |3071 (11)| -
100x20| 5464 6065 (11)|5757 (5)| 5755 (5) - -

Table 2. This table sums up our results. The problems are identified with their name
when one is known. The unnamed problems have been generated with the JSP problem
generator of the ORLIB and are available on our ftp site. The second column gives the size
of the problem. The third one gives the value of the optimum if it is known, a range of it
when it is unknown. The fourth column gives the best result obtained using the evolution-
ary algorithm. The fifth column gives the result obtained with the hybrid EA-+hill-climber
(EA+HC), the sixth with the multi-start hill-climber (MSHC), the seventh with the TABU,
the eighth with the restricted stochastic neighborhood TaBU (RSNT). In (), we have indi-
cated the percent from the optimum the best found schedule lies in. All algorithms have
been run from 10 to 20 experiments.

moderate times of execution. The TABU based heuristics requires much more com-
putation efforts. It is particular noteworthy that the EAs were run during 2000
generations. However, the best schedule that the algorithm is able to find in a run is
usually synthesized during the first hundred generations. Hence, that means that the
EA can be stopped after a hundred generations without losing, most of the times,
the best solution that it would have been able to find in the run. It also means that
we can perform 20 runs in the time of 1, and have much more chance to obtain good
solutions while using the same amount of computational resources.

As a general remark, the EA generally quickly finds a good solution but it is
unable to enhance it so quickly. The TABU is able to find a good solution, though
slowly. Hence, hybridization of the EA with TABU would be able to yield good



Problem ||[EA|EA+HC|MSHC|TABURSNT
carl 17 3 0.0 76 68
car2 19 24 0.0 77 67
car3 6 10 5 50 23
car4 8 19 1 64 51
card 22 8 14 31 43
car6 5 7 20 45 30
la01 - - 0.0 2 0
la02 - - 8 9 9
la03 - - 3 20 22
la04 - - 3 5 -
la05 - - 0.0 0.0 -

mt6 x 6 ||0.0] 0.0 0.0 0.0 0.0

mt10 x 10| 2 13 17 29 -

mt20 x5 || 1 11 10 - -

Table 3. This table gives the rate between the standard deviation and the value of the
optimum for the makespan of the schedules that were found in 10 to 20 experiments. The
values have been multiplied by 1000.

Problem ||[EA|EA+HC[MSHC|TaBU[RSNT
MT6 x 6 ||467| 47 01 |85 2
MT10 x 10|[25°| 18 |1207 | 48 | 28’
MT20 x 5 ||18’| 227 | 24 |3h43| -

Table 4. Order of magnitude of the time required to find the best schedule (timings have
been done on SGI-Indy workstations; these are wall-clock times).

results.

In table 5, we have summarized the results obtained by several authors on the
Muth and Thompson’s problems, mainly using evolutionary algorithms. We have
only taken into consideration works with pure EAs with random initial population.

The Branch-and-Bound (B&B) is an exact method. Carlier and Pinson [CP89]
have obtained the optimal solutions using this method.

Using an AE with an indirect representation, Nakano et Yamada [NY91] have ob-
tained the optimal solution to the MT6x6. Nakano et Yamada [NY92] have obtained
the optimal solution to MT10x 10. They had turned to a direct representation and
the GA/GT as the recombination operator. The optimal schedule of the MT20 x5
has not been found using the same algorithm. It should be noted that the optimal
schedule of the MT10x 10 has only been found in 4 experiments out of 600. [KOY95],
using a new operator, have obtained the optimum of the mt10 x 10 51 times out of
100 experiments, that is much more often than Nakano and Yamada. It should also
be emphasized that among the reported results, only Kobayashi et al [KOY95] work
solely with active plannings.



Reference Algo- | MT | MT MT
rithme |6 x 6|10 x 10|20 x 5
Carlier and Pinson [CP89] B&B | 55 930 | 1165
Nakano and Yamada [NY91] EA | 55 | 965 | 1215
Nakano and Yamada [NY92] EA | 55 | 930 | 1184

Dorndorf and Pesh [DP92] - 55 938 | 1178
Fang, Ross and Corne [FRC93]| EA - 949 | 1189
Juels and Wattenberg [JW94] | EA - 937 | 1174
Soares [Soa94] EA | 58 997 -

Kobayashi et al [KOY95] EA - 930 -

Our results EA | 55 953 | 1180
Optimum 55 930 | 1165

Table 5. This table displays the results obtained by different authors on the Muth and
Thompson problems. The first column gives the references to the work. The second column
indicates the kind of algorithm that have been used. The three subsequent columns give the
results that are reported (best found makespan) for the 3 problems. [NY91] uses an indirect
representation. [NY92] uses a direct representation with the GA/GT operator. [JW94] uses
the representation 2. They use an other recombination operator.

Using an AE, only Nakano and Yamada [NY92] and [KOY95] have obtained the
optimum of the MT10 x 10. No one has obtained the optimum of the MT20 x 5.

It is noteworthy that for the big problems, the research space is huge and only a
small fraction of it is visited by the algorithm.

It is also noteworthy that using EAs with a population 2, or 4 times bigger does
not improve the quality of best found schedules. The rapid loss of diversity probably
accounts for this fact.

We would like to put an emphasis on the performance achieved by the (multi-
start) hill-climber. The best found schedules are either the optimal schedule or very
close to it. This prompts us with two remarks. First, the design of the hill-climber
is very simple while the design of the EA is not so easy (notably because of the
recombination operator). Second, the basic movement of the MSHC is the mutation
that was used in the EA. Hence, this questions the efficiency of the GA/GT operator.

6 Discussion and perspectives

In this paper, we have compared different stochastic meta-heuristics on a test-suite
composed of job-shop-scheduling problems, ranging form small size to big size prob-
lems. The meta-heuristics are hill-climbers, TABU search and evolutionary algo-
rithms. Best schedules that were found, standard deviation, times to obtain this
schedule are reported for 5 algorithms. Hybrid algorithm are observed to achieve
better results than pure algorithms. Furthermore, a simple multi-start hill-climber
often obtains very good solutions. For this kind of algorithms, the trade-off between
its design and its efficiency is then very good.



Given the results obtained with the pure EA and the hybrid EA+hill-climber,
we are prompted to question the efficiency of the recombination operator as long as
this is the real difference between these two algorithms. This observation is radically
different from the one we obtained on the set partitioning problem where the EA
worked much better (both with regards to the solution that was obtained and the
time to obtain it) than several kinds of hill-climbers (see [Tal93]). Hence, further
studies on the role of the recombination are urgently required.

As it was observed in our experiments, different classes of problem hardness seem
to exist. Very pragmatically, we would like to say that a problem is easy if it can
be solved optimally with a simple algorithm. This way, we optimize the trade-off
between the time of design of the algorithm and the quality of solutions it is able
to find. Furthermore, the multi-start hill-climber has also proved to be very fast to
find optimal solutions on a series of problems.

In the forthcoming future, we will increase the number of experiments in order
to obtain representative distributions of the solutions that are found by the studied
algorithms. We will enhance our TABU equipping it with an adaptive size of the
taboo list as is usually done. We will also go further with the restricted neighborhood
version RSNT. Test of the hill-climber with a direct representation is also needed to
be able to fuel the direct versus the indirect representation debate. We also strongly
support the view of using “smart decoders” for the indirect representation to give
better results.

In the mid-term, we will further study other kinds of hybridizations, and pay
some attention to other problems.
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