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Abstract. Evolutionary algorithms are sophisticated hill-climbers. In this
paper, we discuss the ability of this class of local search algorithms to pro-
vide useful and efficient heuristics to solve NP-hard problems. Our discussion
is illustrated on experiments aiming at solving the job-shop-scheduling prob-
lem. We focus on the components of the EA, pointing out the importance of
the objective function as well as the manner the operators are applied. Ex-
periments clearly show the efficiency of local search methods in this context,
the need of hybrid algorithms, as well as the very good performance obtained
by simple hill-climbing algorithms. We also show that our results compare
favorably with other published results.

1 Introduction

Our work aims at assessing what EAs are good for in the context of combinatorial
optimization with regards to other search methods (both exact and non exact).
We think that stochastic local search algorithms can bring something to this field.
Exact methods are limited in the size of the problems they can handle because of
their time/space requirements. We are perfectly aware of some limitations in the
theoretical results to assess solutions found with local searches. However, we think
that hybrid algorithms might provide some useful methods, able to handle large
instances, and able to relax in some measure these theoretical limitations.

To achieve our goal, we concentrate ourselves on the resolution of the job-shop-
scheduling problem (JSP), the traveling salesman problem (TSP), and the quadratic
assignment problem (QAP), and we investigate how the evolutionary paradigm
may be used (see [BPT96] for the QAP). Though sophisticated ones, EAs are hill-
climbers: given a collection of points of the search space, the EA forms a new collec-
tion and keeps, deterministically or not, the best points among these two collections.
The discriminating feature of EAs from a “standard” hill-climber is the use of re-
combination operators. Hence, comparing an EA with a standard hill-climber using
only mutation-like (asexual) operators may shed some lights on the importance of
recombination as well as its efficiency. However, care has to be taken when draw-
ing conclusions on the efficiency of recombination because of the mixed effect of
mutation and recombination.

In this paper, we will restrict ourselves to one problem, namely the job-shop-
scheduling on which we have obtained some significant results. There are several
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variants of the JSP (see [P94]). We consider here the simple JSP where J jobs, each
composed of M operations are to be realized. There are also M machines. Each
operation may be realized on a single machine. Each job has an operation which has
to be performed on each machine. Then, the aim of the search is to find a planning
of occupation of the machines that minimizes the total makespan, that is the total
time of realization of the J jobs. This planning indicates, for each time slot, the
operation it is processing. A planning is said to be active iff none of its operation
may be started earlier resulting in a reduction of the overall makespan. It is known
that the optimal planning is active [GT69]. A critical operation is one that, if started
earlier, would reduce the makespan. Hence, critical operations are good target for
local optimization of a planning. In section 2, we discuss the encoding of solutions. In
section 3, we detail the algorithms we have used so far. Section 4 gives our current
results compared with the best results known so far. To be able to compare our
results with others, we used the ORLIB benchmarks [Orl], that is a set of about
150 instances of size ranging from simple instances to very difficult ones. Finally, we
will discuss these results and give our perspectives.

2 Encoding schemes

In this section, we discuss the encodings of solutions that we have used in our
algorithms. Basically, two classes of encodings may be considered for the JSP. They
are qualified either as direct, or indirect.

2.1 Indirect encoding

When using an indirect encoding, the data structure is not a planning. Given a data
structure, a decoder is required to express the planning. According to the information
that is present in the data structure, the decoder has more or less work to do to
be able to derive a planning. Constraints are handled by the decoder and guarantee
the validity of the planning that is derived. We use a table of J x M entries. Each
job is assigned a class of markers. All the markers associated to one job have the
same tag (the job number in our example, below). The markers are then shuffled in
the array. The decoder considers this array from the “left to the right”. For each
entry, it schedules as soon as possible the next not-yet scheduled operation of the
job associated to the marker that has been found.

2.2 Direct encoding

In the case of a direct encoding, the data structure actually represents a planning.
Hence, no decoder is required. We use a two-dimensional encoding, one dimension
ranging among jobs, the other one among machines. For each machine, we have the
list of operations that are performed with their time slot. For each job, we have the
list of operations tagged with their time slot. This encoding makes it easier to detect
available time slots.



3 Algorithms

We have mainly worked with three classes of primitive algorithms: “standard” hill-
climber, tabu search and evolutionary algorithms. We have also investigated hybrid
algorithms tinkered with these three algorithms as building-blocks. Let us now turn
to a detailed presentation of these algorithms.

3.1 Multi-start Hill-climber

The hill-climber is considered as a very simple heuristic that does not require heavy
computational resources. A hill-climber is very easy to design. However, it may easily
be trapped in a local optimum. We also use a variant of the basic hill-climber, namely
a multi-start hill-climber. Starting at a random point, the hill-climber tries to move
uphill. When, after a certain amount of attempts, it always fails to climb, the current
best point is recorded and the climbing is restarted from another point in the space,
chosen at random. To be more precise, it performs the algorithm displayed in figure

1.

current_schedule := random_schedule
best_ever_found_schedule := current_schedule
best_schedule := current_schedule
for i := 1 to number_of_periods do
for j := 1 to threshold do
candidate_schedule := perform move from current_schedule
if candidate_schedule is better than current_schedule then
current_schedule := candidate_schedule
fi
done
if current_schedule is better or equal to the best_schedule then
best_schedule := current_schedule
if current_schedule is better than the best_ever_found_schedule then
best_ever_found_schedule := current_schedule
fi
else /* Trigger a new experiment */
best_schedule := current_schedule := random_schedule
fi
done
output ("I have found " best_ever_found_schedule)

Fig. 1. The multi-start hill-climber algorithm that we use.

The delicate part in using a hill-climber lies in the choice of the move operator.
Using an indirect encoding, the basic move turns out to be a swap of markers.
Accordingly, using a direct encoding, the basic move is an exchange of two operations.
Using one encoding or the other, the solutions obtained are equivalent.



3.2 TABU search

The TABU search is a hill-climber which is able to escape from local optima [Glo89a,
Glo89b]. The TABU search has only been used with the direct encoding. The basic
move swaps two operations of two different jobs. We use an aspiration criterion
which accepts a movement even though it is taboo if it leads to the best ever found
planning. The size of the taboo list varies dynamically during the run according to

[HW95].

3.3 Evolutionary algorithm

As the TaBu, the EA only works with the direct encoding. The operators, the
objective function, the basic scheme of the algorithm have been tailored for the
resolution of the JSP and are described below.

Encoding The encoding of solutions should fit with the problem, as well as the op-
erators that act on them. In this regard, an encoding providing as much information
as possible, or at least as much as useful, is worthy. An indirect encoding clearly
lacks a lot of information. Thus, we use the direct encoding in the EA. Using this
encoding, we can detect the critical operations of a planning.

Recombination operator We use a recombination operator largely inspired by the
GA/GT crossover introduced in [NY92]. This operator relies on Giffler and Thomp-
son’s algorithm [GT69] to produce an offspring given two parents. The principle of
the GT algorithm is:

— C « first operation (which is not yet scheduled) of each job
compute ECT of operations € C
— repeat
1. select O* € C which has minimum ECT
2. G ¢ operations € C' sharing the same machine with O* and conflicting with
O* (processing overlaps)
3. choose an operation O** € G at random
4. schedule O** as soon as possible according to ECTs
5. update C' and ECTs

— until all operations are scheduled

where C'is a “cut”, GG is a set of operations conflicting with O*, and ECT means
Earliest Completion Time.
A property of this GA/GT operator is that it always produces active plannings.

The mutation operator The mutation performs a swap of two operations. To
lead to a valid planning, the swap should only consider operations on one machine
chosen at random and re-schedule all the operations that are not yet scheduled. This
mutation operator always produces semi-active plannings which, in general, are not
active.



The objective function For the simple JSP, aiming at optimizing the makespan,
the usual idea is to design the objective function as returning the makespan of a
planning/solution. However, close observations of the behavior of the EA in this
case (it is still more salient in the case of the hybrids described below) led us to
work further the objective function. Initially, our criterion to stop the EA was a
null standard deviation of the performance of the members of the population, that
is all individuals have the same makespan. However, this does not involve that all
individuals are the same planning. As long as there is (genotypic) diversity in the
population, the population can evolve. Thus the halting criterion is not the good
one. However, it is not easy to assess the equivalence of two plannings. Thus, it
is difficult to assess the diversity of the population when all individuals have the
same makespan. The number of critical operations may be used as a clue of the
goodness of an individual: the less critical operations it has, the better it is. Hence,
to distinguish two individuals, we used the sufficient (but not necessary) condition:
if two plannings have a different number of critical operations, they are different.
Hence, we use an objective function which combines the makespan and the number of
critical operations. Using this new objective function, the results have been improved
substantially.

Basic scheme of the EA We have observed that, because we are typically using a
high rate of mutation and a sophisticated recombination operator, the benefit of the
application of the crossover is often destroyed by the mutation applied afterwards.
Hence, we use a different scheme of application of the operators. More precisely, the
EA performs as follows:

— initialize the population of plannings at random and make them all active
— while completion criterion is not fulfilled do

e reproduce

e apply operators on offsprings

e operated offsprings form the next population

The operators are applied as follows:

1. pick up two individuals x; and ys in the population

2. perform cross-over on them and stochastically keep the best of the two resulting
individuals: x}

3. perform mutation on one individual among x; and xs choosing one or the other
at random. This results in x4

4. put x| and x4 in the population of offsprings

This non-conventional scheme of application of operators has proven to perform
better.
3.4 Hybrid algorithms

Various hybridization schemes are possible (see [PT95]). We have currently experi-
mented one scheme on the JSP, namely the synchronous hybridization which uses a



search algorithm as a mutation operator. Only direct encodings have been used in
the case of hybrid algorithms (all algorithms are then working on the same repre-
sentation).

We have used a simple hill-climber (HC) as the search algorithm in the hybrid
denoted EA4+HC below. It iterates a certain amount of moves,; starting from a plan-
ning which is the individual it is applied on. The amount of moves that are allowed
while there is no improvement is set to 200. When this threshold is reached, the
algorithm continues to move as long as it climbs up.

We use populations of 300 individuals, stochastic universal sampling reproduc-
tion strategy, generational elitist selection. GA/GT is applied with probability 0.6,
swap mutation is applied to all the individuals, and the hill-climber to 5 % of the
population.

4 Results

4.1 Performance of our algorithms

We now turn to the results we have obtained with previously reviewed algorithms
(cf. table 1). In our benchmark suite, we use the Muth and Thompson’s instances,
the 8 Carlier’s instances, as well as 6 Lawrence’s instances, and 5 Taillard’s instances
of big size. The size of the instances ranges from 6 x 6 to 100 x 20.

Generally speaking, the hybrid EA4+HC always performs better than the EA
alone. The hybrid has found the optimal planning for some instances (MT6 x 6,
MT10 x 10, carl, car2, car3, car4, car6, car7, la01, la02, 1a03, 1a04, and 1a05) while
the EA did only find the optima of the MT6 x 6, 1a01, and 1a05 which are found by
all the algorithms.

For their parts, the hybrid EA;, MSHC, and TABU all achieve the same kind of
results, lying within a few percents from the optimal planning. When considering
the distribution of points found in a series of experiments with a given algorithm,
it clearly appears that the standard deviation of optimal plannings is very different
from one algorithm to another, and from one series of instances to another. The
MSHC generally has a low to moderate standard deviation, the EA and the hybrid
EA+HC a moderate one, the TABU heuristic quite a high one. Furthermore, for all
heuristics, the standard deviation obtained on the Carlier’s instances is much higher
than the standard deviation obtained for Muth and Thompson’s and Lawrence’s
instances. Hence, on the test-suite, the MSHC always finds the same quality of
makespans, while the TABU finds various quality of plannings.

Concerning the mean time of execution of the various algorithms, the very short
time of execution of the MSHC is noteworthy. The EAs (both pure and hybrid) have
moderate times of execution. For the TABU, no such conclusion might be easily
drawn with regards to the size of the instance for the MT’s. It should be pointed out
that the EA+HC was run during 2000 generations. However, the best planning that
the EA4+HC is able to find in a run is usually synthesized during the first hundreds
generation. Hence, that means that the EA+HC can be stopped after a few hundreds
of generations without losing, most of the times, the best solution that it would have
been able to find in the run. It also means that we can perform 10, or 20 runs in
the time of 1, and have much more odds to obtain better solutions while using the



Instance| Size optimum EA EA4+HC | MSHC TABU
mt6x6 | 6x6 55 55 (0) | 55(0) | 55(0) | 55 (0)
mt10x10| 10x10 930 953 (2) | 930 (0) | 947 (2) | 930 (0)
mt20x5 | 20x5 1165 1180 (1) | 1178 (1) 1175 (<1)| 1165 (0)
carl | 11x5 7038 (7101 (<1)| 7038 (0) | 7038 (0) | 7038 (0)
car2 | 13x4 7166 7576 (6) | 7166 (0) | 7166 (0) | 7166 (0)
car3 | 12x5 7312 7594 (4) | 7312 (0) | 7312 (0) | 7399 (1)
card | 14x4 8003 8423 (5) | 8003 (0) | 8003 (0) | 8003 (0)
car5 | 10x6 7702 8047 (4) |7720 (=0)|7738 (x0)|7720 (=0)
car6 | 8x9 8313 8699 (5) | 8313 (0) | 8313 (0) | 8313 (0)
car? | Tx7 6558 6680 | 6558 (0) | 6558 (0) | 6558 (0)
car8 | 8x8 8264 8407 (2) | 8264 (0) |8294 (=00)|3294 (=0)
1a01 | 10x5 666 666 (0) | 666 (0) | 666 (0) | 666 (0)
1a02 | 10x5 655 711 | 655 (0) | 655 (0) | 655 (0)
1a03 | 10x5 597 624 | 597 (0) | 597 (0) | 597 (0)
la04 | 10x5 590 620 | 590 (0) | 590 (0) | 590 (0)
1a05 | 10x5 593 593 (0) | 593 (0) | 593 (0) | 593 (0)
abz7 20x15 (6557 665) 757 685 682 682
1a36 | 15x15| 1268 | 1408 (11)[1292 (<2)| 1281 (1) 1291 (<2)
ta2l 20x20 (15397 1658) 1968 1721 1725 1712
ta3l 30x15 (17647 1766) 2098 1907 1807 1774
tadl 30x20 (18597 2026) 2551 2262 2143 2117
ta51 |50x15| 2760  ||3225 (15)| 2909 (5) | 2760 (0) |2776 (<1)
ta7l |100x20| 5464  ||6065 (10)|5723 (<5)| 5744 (5) |5609 (<3)

Table 1. This table sums up our results. The instances are identified with their name
in the Orlib.The second column gives the size of the instance. The third one gives the
value of the optimum if it is known, a range of it when it is unknown. The fourth column
gives the best result obtained using the evolutionary algorithm. The fifth column gives the
result obtained with the hybrid EA+hill-climber (EA—}-HC)7 the sixth with the multi-start
hill-climber (MSHC), the seventh with the TABU. In (), we have indicated the percent from
the optimum the best found planning lies in. All algorithms have been run from 10 to 20
times.

same amount of computational resources. However, the remark should be tempered
by the fact that, as noted earlier, our objective function has changed, resulting in
a change in the halting criterion. Thus, the genotypic diversity of the population is
now better taken into account to stop the algorithm when the “natural” evolution
of the population has actually ended.

It is noteworthy that for big instances, the research space is huge and only a
small fraction of it is visited by the algorithm.

It is also noteworthy that using EAs with a population 2, or 4 times bigger does
not improve the quality of best found plannings. The rapid loss of diversity probably
accounts for this fact.

We would like to put the emphasis on the performance achieved by the (multi-
start) hill-climber. The best found plannings are either the optimal planning or very
close to it. This prompts us with two remarks. First, the design of the hill-climber



is very simple while the design of the EA is not so easy (notably because of the
recombination operator). Second, the basic movement of the MSHC is similar to
the mutation that was used in the EA. Hence, this questions the efficiency of the
GA/GT operator.

4.2 Comparison with other works

In table 2, we have summarized the results obtained by several authors on the
Muth and Thompson’s instances, mainly using evolutionary algorithms. We have
only taken into consideration works with pure EAs with random initial population.
(However, in some of these works, the initial plannings are generated at random,
and made active before going any further.)

Reference Algo-| MT | MT MT
rithm [6 x 6|10 x 10({20 x 5
Carlier and Pinson [CP89] B&B| 55 930 | 1165
Nakano and Yamada [NY91] EA | 55 | 965 | 1215
Nakano and Yamada [NY92] EA | 55 | 930 | 1184
Dorndorf and Pesh [DP92] - 55 938 | 1178
Fang, Ross and Corne [FRC93] EA | - 949 | 1189
Juels and Wattenberg [JW94] EA | - 937 | 1174
Soares [Soa94] EA | 58 997 -
Kobayashi et al [KOY95] EA | - 930 -
Our results (best obtained results)| EA | 55 937 | 1178
Optimum 55 930 | 1165

Table 2. This table displays the results obtained by different authors on the Muth and
Thompson instances. The first column gives the references to the work. The second column
indicates the kind of algorithm that have been used. The three subsequent columns give
the results that are reported (best found makespan) for the 3 instances. [NY91] uses an
indirect encoding. [NY92] uses a direct encoding with the GA/GT operator. [JW94] uses
the indirect encoding. They use an other recombination operator.

The Branch-and-Bound (B&B) is an exact method. Carlier and Pinson [CP89]
have obtained the optimal solutions using this method.

Using an EA with an indirect representation, Nakano et Yamada [NY91] have ob-
tained the optimal solution to the MT6x6. Nakano et Yamada [NY92] have obtained
the optimal solution to MT10x 10. They had turned to a direct representation and
the GA/GT as the recombination operator. The optimal planning of the MT20 x 5
has not been found using the same algorithm. It should be noted that the optimal
planning of the MT10 x 10 has only been found in 4 experiments out of 600. [KOY95],
using a new operator (a crossover coupled with a hill-climber), have obtained the
optimum of the MT10 x 10 51 times out of 100 experiments, that is much more often
than Nakano and Yamada. It should also be emphasized that among the reported
results; only Kobayashi et al [KOY95] work solely with active plannings.



Using an EA; only Nakano and Yamada [NY92] and [KOY95] have obtained the
optimum of the MT10 x 10. No one has obtained the optimum of the MT20 x 5.

5 Discussion and perspectives

In this paper, we have compared different stochastic meta-heuristics on a test-suite
composed of job-shop-scheduling instances, ranging from small size to big size. The
meta-heuristics are hill-climbers, TABU search and evolutionary algorithms. Best
plannings that were found, standard deviation, times to obtain this planning are
discussed for 4 algorithms. The hybrid algorithm achieves better results than the pure
EA. Furthermore, a simple multi-start hill-climber often obtains very good solutions.
For this kind of algorithms, the trade-off between its design and its efficiency is then
very good.

Given the results obtained with the pure EA and the hill-climber, we are prompted
to question the efficiency of the recombination operator as long as this is the real
difference between these two algorithms. This observation is radically different from
the one we obtained on the set partitioning problem where the EA worked much
better (both with regards to the solution that was obtained and the time to obtain
it) than several kinds of hill-climbers (see [Tal93]). Hence, further studies on the role
of the recombination are required.

As it was observed in our experiments, different classes of problem hardness seem
to exist. Very pragmatically, we would like to say that an instance is easy if it can
be solved optimally with a simple algorithm. This way, we optimize the trade-off
between the time of design of the algorithm and the quality of solutions it is able
to find. Furthermore, the multi-start hill-climber has also proved to be very fast to
find optimal solutions on a series of instances.

In the forthcoming future, we will continue our study of hybridization. We will
shortly have a hybrid EA4+TABU. Further, we wish to experiment with the hy-
bridization scheme discussed in [PT95] relying on the cooperation of search methods
acting concurrently.
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