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Abstract— The fitness function is generally defined rather
straightforwardly in evolutionary algorithms (EA): it is sim-
ply the value of the function to optimize. In this paper, we
argue and show that embedding more information in the
fitness function leads to a significant improvement of the
quality of the local optima that are reached. The technique
is developped here on N'P-hard problems and demonstrated
on the Job-Shop-Scheduling problem. The technique is first
used in a mere steepest descent hill-climber in order to as-
sess its usefulness. Then, it is shown that its use in an EA
also improves its performance in terms of the quality of so-
lutions that are found.
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I. INTRODUCTION

ILL-CLIMBERS are general local iterative search

methods which mainly ground their decision on the
fitness of the current point and the fitness of the neighbor-
ing points. While the choice of the neighbor to visit next is
not a trivial issue, it gets still worse when all neighbors are
equally fitting, that is when the hill-climber has reached
a “plateau”, or when it has found a local optimum. This
paper aims at discussing this problem. We propose a way
to overcome this problem. We exemplify the technique on

NP-hard problems.

When solving a combinatorial optimization problem, we
typically want to optimize one quantity, the main objective
of the search (length of a tour in the Traveling Salesman
Problem (TSP), time to complete a certain set of jobs in the
Job-shop Scheduling Problem (JSP) for example). Most
often, when these problems are tackled with hill-climbers
(either very simple hill-climbers or more sophisticated ones
like tabu search or evolutionary algorithms), the objective
function that is used to decide which point to visit next is
only related to the quantity to optimize. For problems that
have been extensively studied, we are aware of some good
on-side properties that accompany a good tour for the TSP
or a good schedule for the JSP. Though they might appear
to be redundant with regards to the main quantity that is
being optimized, these on-side properties might prove use-
ful when the main objective is not sufficient to discriminate
among neighbors of the current point. When a hill-climber
is on a plateau (all neighbors have the same fitness), these
on-side properties might help to choose the next point to
visit. This technique can also be used to escape from a lo-
cal optimum: when the main quantity can not be improved

* Université du Littoral, Laboratoire d’Informatique du Littoral, BP
719, 62228 Calais Cedex, France, lastname®lil .univ-littoral.fr
t Laboratoire d’Informatique Fondamentale de Lille, URA CNRS
369, Cité scientifique, 59655 Villeneuve d’Ascq Cedex, France,
talbi@lifl.fr

any further, guiding temporarily the search using an other
quantity can be fruitful. Obviously, this quantity has to
be relevant and has to be “orthogonal” with regards to the
other quantity, that is, it has to provide new information.

In the case of the TSP, we know that the shortest path is
likely to be composed of edges among the shortests. Thus,
when confronted with a set of neighbors, it can be fruitful
to choose one in which the average length of edges is shorter
than the other ones. Using this on-side property will typ-
ically provide better tours at the end of the search. We
have applied this basic idea to an other A'P-hard problem,
the Job-Shop Scheduling Problem.

In this paper, we discuss various “on-side” properties
that can be used to improve the choice of the neighbor to
go to. As was suggested in [3], we show that taking this in-
formation into account significantly improves the quality of
the points that are found. To enable a better understand-
ing of what is going on in the algorithm, we develop our
idea with a steepest descent hill-climber using a mutation-
like operator. In the last section of this paper, we show
that the approach is also successful when embedded in an
evolutionary algorithm.

1I. OBJECTIVE FUNCTION

A. Basics

In this paper, we consider minimization problems defined
as:

given a quantity C(z), find a solution X, in the set D
such that

Xo = irélg{C(r)}

Of course, the results presented in this paper can be
straightforwardly applied to a maximization problem.

Using an iterative search algorithm to solve a problem of
this kind, the usual idea is to design the objective function
F as returning the value of the quantity to optimize for the
point under consideration z:

We have plotted the evolution of C'(x) during a typical
run of a steepest descent algorithm minimizing C'(z) (see
figure 1). The plot exhibits several plateaus. On each
plateau, the algorithm has difficulties to be guided in the
neighborhood of the current solution. In this situation,
using other information to guide the search can be useful.
This extra information serves to discriminate points that
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Fig. 1. The evolution of C(z) during a typical run of a steepest
descent algorithm along the iterations. z can be regarded as the
current point during a steepest descent hill-climbing or a tabu
search, or as the best point of the population of an evolutionary
algorithm.

are seemingly identical (identical from the point of view of

C(z)) though being truly different.

We have applied this method to solve different A"P-hard
problems such as the JSP, and the TSP.

In order to simplify the study of this technique and to
be able to assess its effect without multiplying the parame-
ters, we have chosen a very simple algorithm: the steepest
descent hill-climber (SDHC for short). Once the technique
is validated on the SDHC, we show that it can be used
in an EA and improves the quality of the points that are
reached.

In the SDHC, there are two main parameters: the op-
erator and the selection function. The operator swaps
two operations and reschedule operations that needs to be
rescheduled. Using this “simple” operator, we can study
the selection function itself. The objective function is then
the only information that guides the heuristic in the search
space. One of the main goals of embedding several criteria
is to improve the objective function to perform a better
choice among the neighbors of the current solution.

B. The discriminating power of a criterion

A criterion is useful if it can discriminate points that
have the same value for C'. This “discrimination power” is
thus an important characteristic of a criterion and a proper
definition is required.

We introduce a value denoted ¢4(C) that embeds the
“discriminating power” of a certain criterion C"

Definition 1 (discriminating power) Let X = {a;} the
series of points that are visited during a walk, z; being
visited at iteration %.

Let P = {p1,p2,...pn} a partition of X such that z; €
pi,xe € p; iff o(x:) = p(xe) and for any x4 such that
t <t <t p(ee) = @(x:). Each p; is a plateau if it
contains more than one element (| p; |> 1).

Given a criterion C, let C;,,... (C) = {C(z),z € pi} a
partition of the points which belong to a same p;. C;(C) is

the set of the different values that are taken by the criterion
C on the plateau p;.
Then, we define ¢4 (C) as the average number of ele-

ments of sets C;(C): ¢x(C) = il

m

We call this last value the discriminating power of C'

A criterion C such that ¢4 (C) = 11is not a good criterion
since — on average — there is only one value of C' on each
plateau: this means that C' can not be used to guide the
heuristic on the plateaus.

III. APPLICATION TO THE JOB-SHOP-SCHEDULING
PROBLEM

Let us now turn to the use of this technique on an exam-
ple, namely the Job-shop Scheduling Problem. There are
several variants of the JSP (see [2], [9], [5]). We consider
here the simple JSP where J jobs, each composed of M
operations are to be realized on M machines. Each opera-
tion must be realized on a single machine. Each job has an
operation which has to be performed on each machine. A
planning indicates at each time slot and on each machine,
the operation being currently processed.

The makespan of a planning is defined as follows:

Definition 2 (makespan) Let us denote E,, (z) the com-
pletion time of the last operation performed on machine m
according to the planning z. Then we define the makespan
Caax(2) of the planning:

Craax(2) =

max FEp(z)
1<m<M

The objective of the JSP considered here is to minimize
the makespan.

Let us define two terms that are in common use in the
JSP community:

Definition 3 (active planning) A planning is said to be
active iff none of its operations may be started earlier re-
sulting in a reduction of the overall makespan.

It is known that the optimal planning is active [4].

Definition 4 (critical operation) A critical operation is
one that, if delayed, would increase the makespan (if re-
ordering the operations is not allowed).

Hence, critical operations are good targets for local opti-
mization of a planning. The number of critical operations
found in a planning z is denoted C,,(z).

We also define the function H2 of a planning = after [6]:
M
H2 =" B2, (v)
m=1

A. Basic objective function

For the simple JSP, aiming at minimizing the makespan,
the usual idea is to design the objective function as return-
ing the makespan of a planning (e.g. C(2) = Cp..(2)):

.7:1 (.IL‘) = C’max(a@)



Instance oy (H>) i (Cp)
Aver | Std-dev | Aver | Std-dev

mt10x10 3.92 0.56 2.60 0.34

mt20x5 6.39 1.16 4.69 0.88
ta0l 6.85 1.31 3.89 0.75
abz7 27.69 5.93 20.53 4.98
ta3l 33.19 6.67 23.03 5.29

TABLE I

THIS TABLE GIVES THE MEAN VALUE AND THE STANDARD DEVIATION
OF @y FOR TWO CRITERIA AS MEASURED ALONG WALKS OF THE
SDHC usING F;. FOR EACH INSTANCE, 500 EXPERIMENTS WERE

PERFORMED.

B. Discriminating power of different criteria for the JSP

Several criteria may be used as a clue of the goodness of
an individual. A lot of work has still to be done, but we
can discuss here criteria that have shown usefulness when
incorporated into the objective function.

We apply a SDHC on five instances of the simple JSP so
as to compute the average value of py of two criteria along
the walks (cf. table I). The criteria that are used are H2
as well as C,,.

The value of ¢4 is greater than one for the two studied
criteria. This means that these criteria can discriminate
points and can be useful in the objective function. Further-
more, @y(H>) is always greater than ¢4(C.,), indicating a
higher discriminating power for H2 than for C,,.

C. Correlation between criteria

In order to determine which criteria might be interest-
ing to incorporate into the objective function, we have
computed the correlation between each criterion and the
makespan. Thus, we know which criteria are relevant with
the goodness of a point. The correlation is computed over
a set of points drawn at random and over the set of lo-
cal optima reached at the end of the walks. The SDHC
is started from each of the points drawn at random and
uses the objective function (F;) which is only based on the
makespan. This gives us at most 500 local optima.

The figures are displayed in table II. The correlation
between C., and H2 is very high, while the correlation
between (.., and C,, is rather loose for points drawn at
random (inexistent when considering local optima only).
So, according to these values, H2 appears to be a good
criteria to incorporate in our objective function while C,

might provide some indication.

D. Different objective functions

In the previous section, we have introduced several cri-
teria that seem to be interesting to incorporate in the ob-
jective function. Let us now define several functions so as
to evaluate the usefulness of these criteria while solving
the JSP. In the following functions, we define K; (where

Correlation Cmax/H2 | Cmax/Cop | H2/Cop
Random points 0.862 0.364 0.304
Local optima 0.866 0.094 0.052
TABLE I1

THIS TABLE GIVES THE AVERAGE VALUE OF CORRELATIONS BETWEEN
DIFFERENT CRITERIA ON THE FIVE INSTANCES. FOR EACH INSTANCE
500 POINTS ARE SAMPLED.

1 < i < 3) so that the makespan remains the most im-
portant criterion: a variation of the makespan is always
greater than the sum of the variations of the other criteria
for all possible plannings of a given instance of the JSP.

® First of all, we can incorporate the Hs heuristic in the
objective function. We call this function Fa(z):

Fa(@) = K1 x Coa(2) + Ha(2)

K, is an upper bound for Hs(z) over all the possible
plannings of the current instance of JSP.

® The number of critical operations may be used as a clue
of the goodness of an individual: it is commonly held that
the less critical operations a planning contains, the better
the planning is. So we define an objective function based
on this criterion. We call this function Fs(z):

Fs(z) = K3 X Cran(@) + C, (2)

K is an upper bound for C,,(z) over all the possible
plannings of the current instance of JSP.

® To assess whether the added information is relevant and
does help the algorithm, we introduce a function where the
additional criterion is replaced by a random noise. We call
this function Fy(z):

.7:4(1‘) = K3x Cmax(;l‘) + Random(K3)

where Random(K3) is a pseudo-random number genera-
tor (uniform distribution) that returns integer numbers be-
tween 0 and Kz — 1.

® We can also combine two criteria in the same objective
function. Hence, we use an objective function which com-
bines the makespan, the Hs heuristic, and the number of
critical operations. We call this function Fs(z):

fg(l) = ]\72 Xl{l meax(m) + [\72 XHz(I) + C;P(‘I)
® In all functions F; up to Fs, the makespan is the most

important criterion. Finally, we define a function in which
the main criterion is Hy. We call this function Fy(x):

Fo(x) = Kox Hy(2) 4 Cuu()

where Ky is an upper bound for C,,.(z) over all the
possible plannings of the current instance of JSP.



Instance mt mt

10x10 | 20x5 ta01 abz7 ta3l

Size 10x10 | 20x5 | 15x15 | 20x15 | 30x15

Optimum 930 | 1165 | 1231 | 656 | 1T

Fo(z) Aver 1073 1362 1465 779 2156
St.D 40 44 42 17 45

Fi(z) Aver 1085 1351 1467 782 2150
St.D 39 46 46 18 43

Fo(z) Aver 1069 1331 1440 770 2119
St.D 37 42 44 18 45

Fa(z) Aver 1068 1328 1439 770 2118
St.D 37 43 45 19 44

Fa(z) Aver 1083 1349 1459 782 2150
St.D 41 45 44 18 44

Fs(z) Aver 1081 1347 1464 778 2144
St.D 39 46 46 19 43

TABLE IIT

THIS TABLE SUMS UP OUR RESULTS USING THE SDHC. THE
INSTANCES ARE IDENTIFIED WITH THEIR NAME IN THE ORLIB. THE
SECOND LINE GIVES THE SIZE OF THE INSTANCE. THE THIRD LINE

GIVES THE VALUE OF THE OPTIMUM IF IT IS KNOWN, A RANGE OF IT
WHEN IT IS UNKNOWN. THEN FOR EACH FUNCTION, THE TABLE GIVES

THE AVERAGE VALUE AND THE STANDARD DEVIATION OF THE

MAKESPAN OVER 500 EXPERIMENTS. SEE THE MAIN TEXT FOR THE
DEFINITION OF THE DIFFERENT FUNCTIONS.

In the following section, we have set K; to the maximum
value of each criteria:

o Ky = D41 where D is the sum of the duration of all the
operations of the instance: it is easy to see that the
makespan of active plannings is always smaller than
this value.

o Ky =MxD?

o Ky = JxM: there are Jx M operations, so that there
are no more than J x M critical operations.

o K3 = Ky: using this value, the number given by
Random(K3) are of the same order of magnitude than
the makespan.

In fact it is possible to define these values precisely, but
this is useless for our application: all we need is to define
upper-bounds of the criteria so that the makespan remains
the main criterion.

IV. REsULTS

We use the benchmarks of the orLIB [1]. In our test-
suite, the size of the instances ranges from 10x10 to 30x15.
Our SDHC has been tested with the six objective functions
Fo to Fs. For each instance, a set of 500 initial solutions
are drawn at random. Then, the six functions are tested
on this set of solutions. The results we have obtained are
displayed in table III.

On each instance of our test-suite, F3 provides the best
results in terms of the quality of the local optima that
are found. Clearly, the more information is embedded in
the objective function, the better the results. The worst
objective function is generally F; where C,.., is the only
criterion. F4, the function which includes a random noise,
performs at least as well as F1, generally better. Fy where

C..x 18 not the main criterion, competes rather well with

Fi.

Clearly, these results show that our approach is relevant
and actually useful on real problems.

V. APPLICATION TO AN EVOLUTIONARY ALGORITHM

In order to demonstrate that this approach can be used
in different hill-climbers, we have embedded the same set
of objective functions in an evolutionary algorithm and run
it on the same set of instances.

We have designed the EA as discussed in [3] and we refer
the reader to this reference for any further detail. Our EA
uses direct encoding, this means that the data structure
actually represents a planning. We use a recombination
operator based on the GA/GT crossover introduced in [8].
The mutation performs a swap of two operations and re-
schedule all the operations that needs to be rescheduled
(due to the swap). We have observed that, because we are
typically using a high rate of mutation and a sophisticated
recombination operator, the benefit of the application of
the crossover is often destroyed by the mutation applied
afterwards. Hence, we use a different scheme of application
of the operators where crossover and mutation are exclu-
sively applied instead of using a “serial” scheme. Clearly,
our objective here is not to tune the EA to obtain the best
results. Rather, we simply aim at showing that the same
kind of improvements on the quality of the solutions that
are reached can be obtained. Thus, we use standard pop-
ulation size, rate of application of operators and a ranking
selection plus elitism. We will not go into more details
about it because it would require a thorough presentation
of the coding of solutions and a description of the operators
that are out of the scope of this paper.

The results that were obtained to date are still partial
with regards to those presented earlier on the SDHC (see
table IV). However, it is again very clear that the extra in-
formation does help the algorithm to find better solutions.
In all cases except one, the F3 function leads to the best
performance. However, the performance of F; with regards
to the mere Fj is not so striking as for the SDHC.

VI. DISCUSSION AND PERSPECTIVES

In this paper, we have focussed our attention on the ob-
jective function used by hill-climbers in general, evolution-
ary algorithms being one special case of this general class
of meta-heuristics. We have concentrated ourselves on the
problem which is raised when the search reaches a plateau
of the fitness landscape. Driven by its objective function,
the hill-climber is then totally unable to grasp on some in-
formation to guide itself towards the next point to visit. We
have proposed a method to alleviate this problem which re-
lies on the use of on-side properties that go along with the
goodness of a solution with regards to the function being
optimized. We have embedded this technique in a steepest
descent hill-climber and demonstrated its usefulness on the
simple JSP. We argued that this technique can be used on



Instance mt mt
10x10 | 20x5 ta0l abz7
Size 10x10 | 20x5 15x15 | 20x15
Optimum 930 1165 1231 656
Fi(z) Aver 986 1210 1328 719
St.D 17 16 22 5
Fo(z) Aver 987 1216 1310 719
St.D 15 18 23 15
Fa(z) Aver 978 1203 1317 706
St.D 17 23 12 6
TABLE IV

THIS TABLE SUMS UP OUR RESULTS USING AN EA. THE SECOND LINE
GIVES THE SIZE OF THE INSTANCE. THE THIRD LINE GIVES THE VALUE
OF THE OPTIMUM IF IT IS KNOWN, A RANGE OF IT WHEN IT IS
UNKNOWN. THEN FOR EACH FUNCTION, THE TABLE GIVES THE
AVERAGE VALUE AND THE STANDARD DEVIATION OF THE MAKESPAN
OVER 10 RUNS.

any NP-hard problem on which some knowledge is avail-
able (that is at least all the well-known A P-hard prob-
lems). Furthermore, there is no reason why this technique
would not be applied to any optimization problem. We
have also shown that this technique can also be embedded
into to evolutionary algorithms and still improves the qual-
ity of the local optima that are found. Furthermore, this
technique does not require a lot of implementation work
and the computational cost can be low. (Obviously, this
depends on the kind of on-side properties that are used and
the cost to compute them.)

An other application of this technique in evolutionary al-
gorithms would be to measure, and thus help maintain, the
diversity of the population, the keypoint of a good search
for an evolutionary algorithm. It is not always obvious to
figure out whether two individuals are different or not: at
the genotype level, two individuals might seem different
though representing two really identical individuals (e.g.
when individuals are graphs, checking the equivalence of
two graphs can not always be efficiently done); in the same
time two individuals having the same fitness can be truly
distinct. Using extra information as these on-side prop-
erties would help discriminate among the individuals with
the same value for their main objective but different with
regards to their genotypes.
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